
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release. Distribution is unlimited. 

AUTOMATED CREATION OF LABELED POINTCLOUD 
DATASETS IN SUPPORT OF MACHINE LEARNING–

BASED PERCEPTION 
 

by 
 

Andrew K. Watson 
 

December 2017 
 

Thesis Advisor:  Douglas Horner 
Co-Advisor: Mathias Kölsch 
Second Reader: Michael McCarrin 



  

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB  
No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE  
December 2017 

3. REPORT TYPE AND DATES COVERED 
Master’s thesis 

4. TITLE AND SUBTITLE  
AUTOMATED CREATION OF LABELED POINTCLOUD DATASETS IN 
SUPPORT OF MACHINE LEARNING–BASED PERCEPTION 

5. FUNDING NUMBERS 
 

6. AUTHOR(S) Andrew K. Watson 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER  

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A ____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release. Distribution is unlimited. 
 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  

Autonomous vehicles continue to struggle with understanding their environments and robotic 
perception remains an active area of research. Machine learning–based approaches to computer vision, 
particularly the increasing application of deep neural networks, have been responsible for many of the 
breakthroughs in robotic perception over the last decade. We propose a three-phase model for improving 
pointcloud classification. Progress in applying machine learning–based perception to new problem sets is 
hampered by the difficulty in creating new training data. As such, our primary contribution is a technique 
to automate the creation of training data for 3D pointcloud classification problems. Our proposed 
implementation collects synchronized 2D camera images and 3D LIDAR pointclouds, depth clusters each 
LIDAR frame to spatially segment a scene, correlates each resultant pointcloud segment to a cropped 2D 
image, and processes each crop through a 2D image classifier to assign a segment label. Our automated 
implementation produced labeled 3D pointclouds from raw LIDAR collection and, during testing, yielded 
a small dataset with 81% accuracy of annotations. We also propose a method of scene “context discovery” 
to boost pointcloud classification performance. Our approach explores a method to scrape regionally 
geotagged media for processing through an object-detection neural network. We develop a database 
mapping of object-type spatial relationships in a specific physical environment and propose applying these 
relationships as weights to boost pointcloud classifier performance. 

14. SUBJECT TERMS  
neural network, dataset annotation, LIDAR, computer vision, scene context  

15. NUMBER OF 
PAGES  

103 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  

 Prescribed by ANSI Std. 239-18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii 

 
Approved for public release. Distribution is unlimited. 

 
 

AUTOMATED CREATION OF LABELED POINTCLOUD DATASETS IN 
SUPPORT OF MACHINE LEARNING–BASED PERCEPTION 

 
 

Andrew K. Watson 
Civilian, United States Government 

B.S., University of Illinois, 2003 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
December 2017 

 
 
 
 
 

Approved by:  Douglas Horner, Ph.D. 
Thesis Advisor 

 
 

Mathias Kölsch, Ph.D.  
Co-Advisor 
 
 
Michael McCarrin 
Second Reader 

 
 

Peter Denning, Ph.D. 
Chair, Department of Computer Science 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

Autonomous vehicles continue to struggle with understanding their environments 

and robotic perception remains an active area of research. Machine learning–based 

approaches to computer vision, particularly the increasing application of deep neural 

networks, have been responsible for many of the breakthroughs in robotic perception 

over the last decade. We propose a three-phase model for improving pointcloud 

classification. Progress in applying machine learning–based perception to new problem 

sets is hampered by the difficulty in creating new training data. As such, our primary 

contribution is a technique to automate the creation of training data for 3D pointcloud 

classification problems. Our proposed implementation collects synchronized 2D camera 

images and 3D LIDAR pointclouds, depth clusters each LIDAR frame to spatially 

segment a scene, correlates each resultant pointcloud segment to a cropped 2D image, 

and processes each crop through a 2D image classifier to assign a segment label. Our 

automated implementation produced labeled 3D pointclouds from raw LIDAR collection 

and, during testing, yielded a small dataset with 81% accuracy of annotations. We also 

propose a method of scene “context discovery” to boost pointcloud classification 

performance. Our approach explores a method to scrape regionally geotagged media for 

processing through an object-detection neural network. We develop a database mapping 

of object-type spatial relationships in a specific physical environment and propose 

applying these relationships as weights to boost pointcloud classifier performance. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS  

I. INTRODUCTION..................................................................................................1 
A. PROPOSED APPROACH ........................................................................2 
B. CONTRIBUTIONS....................................................................................3 

II. MODEL OVERVIEW ...........................................................................................5 
A. PHASE 1: AUTOMATED DATASET CREATION AND 

TRAINING .................................................................................................7 
1. Synchronized Collection of Pointcloud and RGB Data ..............7 
2. Pointcloud Segmentation ...............................................................8 
3. 3D-2D Correlation .........................................................................8 
4. 2D Classification...........................................................................11 
5. Confidence-Level Thresholding ..................................................11 
6. Segment Transformation .............................................................12 
7. Neural Network Training ............................................................14 

B. PHASE 2: CONTEXT DISCOVERY ....................................................14 
1. Acquisition of Geotagged Media.................................................16 
2. Object Detection ...........................................................................16 
3. Populate Scene Context Database ..............................................17 

C. PHASE 3: REAL-TIME POINTCLOUD CLASSIFICATION ..........18 
1. Classifier Preparation ..................................................................19 
2. Pointcloud Collection ...................................................................19 
3. Pointcloud Segmentation .............................................................19 
4. Data Transformation ...................................................................19 
5. Classification by Neural Network...............................................20 
6. Results Boosting ...........................................................................20 
7. Confidence Thresholding ............................................................22 

D. MODEL CONCLUSIONS ......................................................................22 

III. RELATED WORK ..............................................................................................23 
A. NEURAL NETWORKS ..........................................................................23 
B. DATASET CREATION ..........................................................................24 

1. Hand Annotated Datasets............................................................24 
2. Tool-Based Annotation of Datasets ............................................25 
3. Synthetic Dataset Creation ..........................................................27 

IV. BACKGROUND ..................................................................................................29 
A. NEURAL NETWORKS ..........................................................................29 



 viii 

1. Overview of Neural Networks.....................................................29 
2. TensorFlow and Inception ..........................................................31 

B. POINTCLOUDS ......................................................................................31 
1. Pointcloud Overview ....................................................................31 

V. METHODOLOGY ..............................................................................................33 
A. PHASE 1 IMPLEMENTATION ............................................................33 

1. Synchronized Collection of Pointcloud and RGB Data ............34 
2. Pointcloud Segmentation .............................................................43 
3. 3D-2D Correlation .......................................................................44 
4. 2D Classification...........................................................................45 
5. Confidence-Level Thresholding ..................................................46 
6. Phase 1 Steps Not Implemented..................................................46 

B. PHASE 1 EXPERIMENT SETUP .........................................................46 
C. PHASE 1 CRITERIA FOR EVALUATION .........................................47 
D. PHASE 2 EXPLORATION ....................................................................48 

1. Acquisition of Geotagged Media.................................................48 
2. Object Detection ...........................................................................49 
3. Populate Scene Context Database ..............................................49 

VI. ERROR ANALYSIS ............................................................................................53 
A. PHASE 1 ERROR SOURCES ................................................................53 

1. Synchronized Collection Error ...................................................53 
2. Pointcloud Segmentation Error ..................................................56 
3. 3D-2D Correlation Error ............................................................57 
4. 2D Classification Error................................................................58 
5. Confidence-Level Thresholding Error .......................................60 

VII. RESULTS .............................................................................................................63 
A. PHASE 1 FUNCTIONALITY ................................................................63 
B. PHASE 1 PERFORMANCE ...................................................................64 

1. Sources of Pipeline Error ............................................................64 
2. Comparison to Human Performance .........................................68 

VIII. CONCLUSIONS ..................................................................................................71 
A. AUTOMATED DATASET CREATION CONCLUSIONS ................71 
B. FUTURE WORK .....................................................................................72 

1. Dataset Database ..........................................................................72 

APPENDIX .......................................................................................................................73 



 ix 

A. TANDEM LIDAR AND CAMERA MOUNT TOP PLATE CAD 
DRAWINGS .............................................................................................73 

B. TANDEM LIDAR AND CAMERA MOUNT MOBILE 
COLLECTION BOX CAD DRAWINGS ..............................................73 

C. TANDEM LIDAR AND CAMERA MOUNT TOP PLATE 
STEREOLITHOGRAPHY FILES ........................................................73 

D. TANDEM LIDAR AND CAMERA MOUNT MOBILE 
COLLECTION STEREOLITHOGRAPHY FILES ............................73 

E. NEIGHBORHOOD 1 DATASET ..........................................................73 
F. NEIGHBORHOOD 2 DATASET ..........................................................73 
G. ADDITIONAL DATASETS ...................................................................73 
H. SEGMENT ANALYSIS OF NEIGHBORHOOD 1 DATASET ..........74 
I. SEGMENT ANALYSIS OF NEIGHBORHOOD 2 DATASET ..........76 

LIST OF REFERENCES ................................................................................................79 

INITIAL DISTRIBUTION LIST ...................................................................................85 

 

  



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF FIGURES  

 Year Over Year Improvements in Top-1 Image Classification 
Accuracy on the ILSVRC2012 Validation Set. Adapted from [4], 
[5], [6]. .........................................................................................................3 

 Flowchart of Three-Phase Pointcloud Classification Model .......................6 

 Flowchart of Phase 1, Automated Dataset Creation ....................................7 

 Vertical and Horizontal Pixels-per-Degree Ratio ........................................9 

 Mapping of 3D Pointcloud Coordinates to 2D Frame Pixels ....................10 

 Example of Raw LIDAR Pointcloud of an Excavator from the 
Sydney Urban Objects Dataset. Adapted from [29]. .................................13 

 Data Transformation of Figure 6’s Excavator to a Scaled, Translated, 
and Voxelized Representation. Adapted from [29]. ..................................14 

 Flowchart of Phase 2, Context Discovery ..................................................16 

 Image Classification versus Object Detection. Adapted from [10]. ..........17 

 Flowchart of Phase 3, Pointcloud Classification .......................................18 

 A Simple Neural Network. Source: [40]....................................................30 

 East-North-Up LIDAR Reference Frame Defining Pointclouds 
Coordinates ................................................................................................32 

 Implementation of Phase 1’s Automated Dataset Creation .......................34 

 Visualization of LIDAR Pointcloud and Camera Data Collected .............35 

 From Left to Right, Top to Bottom: Cyberpower 200W Inverter, 
12V Battery, Velodyne LIDAR Interface Box, and Fully Loaded 
Mobile Collection Box ...............................................................................36 

 Collection Mount and Mobile Collection Box Design ..............................37 

 Collection Mount Fabrication Process .......................................................38 

 Horizontal Field of View of Camera and LIDAR Collection Rig. 
Only the Front Camera’s Collection Was Used for Testing. .....................40 



 xii 

 32.32 Degree Vertical Field-of-View Available to Phase 1 Pipeline ........41 

 Collection of Synchronized LIDAR and Camera Data..............................43 

 Phase 1’s Segmentation Step Implemented Using Depth Clustering ........44 

 Implementation of 3D-2D Correlation of 3D Pointcloud Segment to 
Bounding Box on 2D Frame ......................................................................45 

 Map View of Routes for “Neighborhood 1” and “Neighborhood 2” 
Collections .................................................................................................47 

 “Scene Context” Database Table for “Parking Meter.” Shows 
Weighted Relationship with “Car,” “Person,” and “Truck.” .....................51 

 Zoomed-Out Visualization of Entire “Scene Context” Database 
Containing Relationship Weights between Objects in a Specific 
Physical Environment ................................................................................52 

 LIDAR Segment Out of Sync with Camera Frame ...................................54 

 LIDAR Collection Error; Ghosted Pointcloud Segment ...........................55 

 Errant Laser Return Revealed during 3D-2D Correlation .........................56 

 Vehicle and Signs Segmented as a Single Object ......................................57 

 Horizontal 3D-2D Correlation Error ..........................................................58 

 2D Image Classification Error ...................................................................59 

 Occlusion Example. Tree Pointcloud Segment Labeled as Car Due to 
Foreground of Image Crop. ........................................................................60 

 Incorrect, High-Confidence Pointcloud Label of “Bearskin” for Tree ......61 

 Example of Phase 1 Implementation Output .............................................63 

 Pipeline Performance on “Neighborhood 1” Dataset in Producing 
Correctly Labeled Pointcloud Segments ....................................................64 

 Pipeline Performance on “Neighborhood 2” Dataset in Producing 
Correctly Labeled Pointcloud Segments ....................................................66 

 Aggregate Performance of Automated Dataset Creation Pipeline ............68 

 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

2D Two Dimensional 

3D Three Dimensional 

4K Video Format with Four Times the Resolution of High Definition 

COCO Common Objects in Context 

DARPA Defense Advanced Research Projects Agency 

ILSRVC  ImageNet Large Scale Recognition Visual Competition 

Inception-v3 3rd Release of the Inception neural network model 

LIDAR  Light Detection and Ranging 

MJPEG Motion Joint Photographic Experts Group 

MNIST Modified National Institute of Standards and Technology 

PCL Point Cloud Library 

PLA Polylactic Acid 

RGB Red, Green, and Blue 

RGB-D Red, Green, Blue, and Depth 

ROS Robot Operating System 

RViz ROS Visualization 

SSD Solid State Drive 

UDP User Datagram Protocol 

USB Universal Serial Bus 

Voxel Volumetric Pixel 

VOC Visual Objects Classes 

 

 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xv 

ACKNOWLEDGMENTS 

I would like to thank my wife, Jenna, for all her hard work in helping me 

complete this research. Without her assistance, it would not have been possible to 

dedicate the hours required to finish and I am very grateful. 

I would also like to thank my advisors, Doug, Mathias, and Michael, for their 

combined effort over the last year and during the final weeks of processing. Your 

guidance was top notch and I appreciate you encouraging me to finish despite the 

difficult time constraints.  

 

 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

Rapid improvements in neural networks over the previous decade promise a range 

of new capabilities for autonomous systems, particularly in the realm of autonomous 

vehicles. However, the underlying technology of these improvements, namely deep 

neural networks, can require a tremendous amount of labeled training data to produce 

accurate classifiers. Labeled training data typically consists of a collection of dataset 

records, with each record having a discrete ground-truth label assigned to it. As an 

example of the scope of such datasets, the most well-known image classification 

challenge, the ImageNet Large Scale Visualization Recognition Challenge (ILSRVC), 

provides over 1.2 million hand-annotated images as labeled training data for training 

image classifiers [1]. This reliance on large, labeled training datasets has the potential to 

throttle the development of autonomous capabilities for new problem sets. Our research 

proposes a three phase model for improved pointcloud classification and provides an 

evaluation of the first phase. Specifically, we evaluate whether well-documented 

improvements in 2D image classification can produce labeled training data for other 

realms of robotic perception. We evaluate our proposal on 3D LIDAR data, a type of data 

which is especially relevant in the field of autonomous vehicles, and leverage an 

industry-standard neural network to create training data for another neural network. 

Specifically, we seek to measure the accuracy of annotating 3D LIDAR pointcloud 

segments with the output of a 2D image classifier. We also conduct an overview of 

established hand annotation practices and compare hand annotation to our proposed 

approach.  

The application of LIDAR and other pointcloud producing sensors in the field of 

robotics has historically focused on obstacle avoidance and path planning. For example, 

LIDAR sensors provided Stanford’s “Stanley” vehicle with superior path planning during 

the 2005 DARPA Grand Challenges [2], and provide similar capabilities to a wide range 

of autonomous passenger vehicles being road-tested in 2017 [3]. However, obstacle 

avoidance, a navigation technique, provides an autonomous vehicle with a very limited 

understanding of its environment – primarily whether a path is navigable or not. A more 

https://paperpile.com/c/Jft1pV/WZxL+NQZ7


 2 

sophisticated understanding of an environment, such as the identification of the specific 

type of obstacle in an autonomous vehicle’s path (i.e., a human obstacle versus a trash 

bag obstacle), can allow for better decisions in response to the nature of an obstacle. A 

key step towards that end is object recognition and our research aims to bolster creation 

of the training data required to build the requisite semantic neural network classifiers. 

A. PROPOSED APPROACH 

We implement and evaluate the first phase of our proposed point classification 

model. Specifically, we implement an automated software pipeline designed to create 

labeled training datasets. Notably, the pipeline requires specialized, tandem collection of 

raw 2D and 3D data, and subsequently processes 2D image crops through an image 

classifier to create labels for LIDAR pointcloud segments. This is in contrast to the 

established practice of manual labeling by humans, known as hand annotation. Hand 

annotation of datasets can be resource intensive (see section 2.B) and LIDAR data’s low 

resolution representation of objects provides significantly less context for a human 

annotator when determining how to label an object compared to high definition 2D 

images. As our proposed pipeline creates labels from the output of an industry-standard 

2D image classifier, the intent is to leverage existing and future improvements in the 

image classification on an entirely modular basis. Specifically, our pipeline’s image 

classifier can be replaced with a more accurate classifier, once available, and any such 

image classification improvements will have an immediate, positive benefit on our 

pipeline’s dataset annotation performance. We note the tremendous improvements in 2D 

neural network-based image classification in Figure 1, but highlight that Top-1 accuracy, 

a term used to describe a classifier’s top guess for an image’s contents, reaches only 

81.32% on the ILSVRC2012 benchmark [4], leaving significant room for future 

improvement. Our pipeline’s accuracy will be constrained by the Top-1 accuracy 

performance of available 2D classifiers.  

 



 3 

 

 Year Over Year Improvements in Top-1 Image Classification Accuracy 
on the ILSVRC2012 Validation Set. Adapted from [4], [5], [6]. 

Our research focuses on a pipeline to create labeled LIDAR data; however, we 

propose that the technique employed could be broadened to automate the labeling of 

datasets from other pointcloud-producing sensors as well. 

Our research also explores the development of a “context database” describing 

spatial relationships between object types in a specific physical environment. We discuss 

a methodology to incorporate the strength of object type relationships into our 

classification results as a means of increasing accuracy.  

B. CONTRIBUTIONS 

The primary contribution is the presentation of three phase model for automated 

3D pointcloud labeling, scene context discovery, and novel adjustments to established 

pointcloud classifiers. We accomplish an initial demonstration of automated dataset 

creation by collecting synchronized camera and pointcloud data and assigning pointcloud 

labels from the output of an image classifier. The benefit of our approach is the reduction 

of resource-intensive human annotation from the pointcloud labeling process through the 

execution of a framework for autonomously labeling large pointcloud datasets. The initial 

limitations of our fielded demonstration are diminished annotation accuracy, compared to 



 4 

human annotation, and the discarding of low-confidence segments by our pipeline. We 

assess our work as potentially useful for producing an initial “first draft” of labels for a 

human annotator to validate, as opposed to manually selecting a class label from a very 

large list. Given difficulty in manually labeling pointclouds, we assess that leveraging our 

pipeline’s output label as a recommendation for a human annotator would prove useful in 

hastening the pointcloud annotation process. We also provide an exploratory 

implementation for automating what we characterize as scene context discovery. Context 

discovery, as our model defines it, requires acquiring geotagged media recorded in a 

desired operating environment and processing the media with object-detection neural 

networks. We map out spatial relationships between object types in an environment using 

these results and populate a database. Lastly, we outline two schemes to apply our scene 

context data to pointcloud classification results, with the intent of improving pointcloud 

classifier performance.  

 



 5 

II. MODEL OVERVIEW 

We propose a comprehensive model for classification of pointclouds and we 

present the model’s three phases. We first outline our model’s two pre-processing 

phases—dataset creation and context discovery—and then describe the model’s third 

phase, pointcloud classification. We begin our model overview with a detailed discussion 

of our automated dataset creation proposal, which we characterize as Phase 1. Phase 1’s 

automated dataset creation methodology begins with the collection of synchronized 

LIDAR and RGB camera data and executes an automated dataset labeling algorithm. 

Specifically, our Phase 1 labeling methodology leverages a 2D image classifier, coupled 

with the RGB camera frames, to create labels for segmented pointclouds from our 

synchronized data collection. Phase 2 of our model describes “context discovery,” a 

technique we propose to improve classification by producing a database which is keyed 

to a physical operating environment and contains the assessed likelihood of spatial object 

pairings for that environment. These pre-calculated likelihoods are applied as weights to 

Phase 3’s classification results, boosting results that are prevalent in the operating 

environment. Phase 2’s context discovery algorithm builds the relational database by 

processing geotagged media from a desired operating environment.  

Following completion of the Phase 1 and Phase 2’s pre-processing steps, we 

further propose a method for pointcloud classification, Phase 3. Our outline of Phase 3 

offers three approaches to boosting classifier performance: temporal weighting, absolute 

weighting, and relational weighting. Temporal weighting leverages previous-frame 

segment classifications to adjust weights of current-frame segment classifications. 

Absolute weighting applies the absolute hit-counts from the context discovery database 

as weights to the pointcloud classifier outputs. Relational weighting does intra-frame 

analysis and applies a weight to prospective classifications in a given scene based on the 

prevalence of object relationships in the context discovery database. While our research 

primarily focuses on evaluating the first pre-processing component of this model, the 

Phase 1 automated dataset creation, we outline all three phases of our model to provide 

context and as potential future work. Figure 2 provides a visual overview of the three 



 6 

phases in our model. We first discuss the two pre-processing phases, dataset creation and 

context discovery, and finish with a discussion of the Phase 3 pointcloud classifier. 

 

 Flowchart of Three-Phase Pointcloud Classification Model 

 



 7 

A. PHASE 1: AUTOMATED DATASET CREATION AND TRAINING 

Phase 1, automated dataset creation, is the first pre-processing step of our model. 

We provide an outline for our automated dataset creation methodology and describe the 

multi-step procedure for automating the labeling of pointcloud segments from raw, 

synchronized 2D and 3D collection. Figure 3 provides an overview of Phase 1. 

 

 Flowchart of Phase 1, Automated Dataset Creation 

1. Synchronized Collection of Pointcloud and RGB Data 

The automated dataset creation process we propose first requires the collection 

and saving of synchronized 2D camera and 3D pointcloud data to an archive. The raw 

RGB data collected during Phase 1 is leveraged during subsequent Phase 1 steps to derive 

plain English labels. As such, we propose employing RGB sensors that provide a 

maximum horizontal field of view during the synchronized collection step. Leveraging 

hardware featuring a large horizontal field of view will increase the likelihood of 

collecting multiple look angles at individual objects and could ultimately produce a more 

comprehensive labeled dataset at the completion of Phase 1. Of note, the requirement for 

2D RGB camera data limits Phase 1’s data collection to well-lit, daytime operating 

conditions.  



 8 

2. Pointcloud Segmentation 

The pointcloud segmentation step executes on the pointcloud portion of the 

synchronized data previously collected in Phase 1. The pointcloud data frames contain a 

raw, unprocessed representation of the entire scene imaged by a 3D sensor. Recall that 

Phase 1’s aim is to produce a dataset of labeled, distinct objects from this raw collection 

and, as such, pointcloud segmentation is applied to each pointcloud frame. The 

segmentation process divides the pointcloud scene into individual clusters of points, with 

each cluster or segment representing a distinct object in the scene. These segments 

remain of unknown object type and subsequent steps aim to identify and label each 

segment.  

3. 3D-2D Correlation  

The previous step produced pointcloud segments for discrete objects in a 

pointcloud scene. We now begin a multi-step process of determining a label for a 

segment, beginning with mapping a 3D pointcloud segment to a 2D image. Recall that 

Phase 1 required synchronized 2D images to be collected alongside 3D pointcloud data. 

We begin the 3D-2D correlation step by loading the synchronized 2D image that was 

collected at the same moment as the pointcloud segment we seek to label. Unlike the 

now-segmented pointcloud data, the 2D frame still represents the entire scene imaged by 

the RGB sensor at the time of collection. During Phase 1, it must be possible to correlate 

each 3D point (X,Y,Z) in the as-yet unlabeled pointcloud segment to a corresponding 

pixel (X’,Y’) on the 2D image collected at the same moment. Although RGB-D sensors 

would intrinsically provide this 3D-2D mapping, their poor outdoor performance renders 

them unsuitable for this application. Thus, additional software tools must be developed to 

achieve the desired 3D-2D correlation. Figure 4 depicts the first step of this correlation 

process, in which we calculate a pixel-per-degree ratio from the horizontal and vertical 

field-of-view angular ranges for the RGB sensor, along with the pixel dimensions of 

RGB frames.  



 9 

 

 Vertical and Horizontal Pixels-per-Degree Ratio 

With the pixel-per-degree ratios pre-calculated, we correlate each 3D coordinate 

in a pointcloud segment to a pixel location on the synchronized RGB frame according to 

the process illustrated in Figure 5. For each 3D point in the segment, we calculate the 

arctangent of the 3D point’s Z and Y values and the 3D point’s X and Y values. This 

yields the vertical angular offset and the horizontal angular offset, respectively, from the 

pointcloud sensor’s origin. Multiplying each resultant vertical or horizontal angular offset 

with the corresponding pre-calculated vertical or horizontal pixels-per-degree ratio yields 



 10 

the pixel offset from the center of the RGB camera frame, on both the horizontal and 

vertical planes. As depicted in step 3 of Figure 5, both pixel offset values then undergo a 

simple 2D translation operation to account for the 2D frame’s origin being located in the 

upper left corner of the frame. 

 

 Mapping of 3D Pointcloud Coordinates to 2D Frame Pixels 



 11 

We iterate through each 3D point in the pointcloud segment and apply this 3D-2D 

correlation process, ultimately creating a collection of 2D pixel locations that define a 

bounding box on the 2D camera frame. The 2D image’s bounding box, which we use to 

crop the full 2D image, fully encapsulates the physical object represented with 3D points 

in the pointcloud segment. To reiterate, this step of Phase 1 ingests a pointcloud segment, 

calculates the 2D pixel location for each 3D point in the segment, and determines a 2D 

image crop of the RGB image containing the same physical object represented by the 

pointcloud segment’s 3D points. As detailed in the following section, we subsequently 

classify the 2D image and apply the resulting semantic label to the pointcloud segment it 

was derived from. 

4. 2D Classification 

Previous steps in Phase 1 have shown methodology for producing unlabeled 

pointcloud segments, and corresponding 2D image crops that represent the same physical 

object. We now seek to determine a prospective plain English label for the unidentified 

pointcloud segment. To accomplish this step, we provide the 2D image crop as an input 

to a 2D image classifier, which outputs a label for the 2D image crop. As contemporary 

2D image classification is dominated by neural network-based approaches, we note that 

these types of 2D image classifiers provide two outputs relevant to our model. First, 

neural network image classifiers output a list of possible plain English classifications for 

an input image, typically drawn from a fixed range of class types (e.g. “stop sign”) and, 

second, they output a confidence value associated with each possible classification. We 

rank order the image classification outputs using their confidence values and the highest 

confidence result, referred to as the Top-1 result, is the prospective label we apply to our 

3D pointcloud segment. However, without any additional filtering, even the Top-1 result 

may represent a low-confidence identification. This is addressed with confidence-level 

thresholding. 

5. Confidence-Level Thresholding 

As of this step in Phase 1, we have produced a prospective plain English label for 

a pointcloud segment. We enact a simple filtering scheme to discard low-confidence Top-



 12 

1 labels. Specifically, if a segment’s label is above some user-defined threshold, we 

continue processing the segment in Phase 1. However, the underlying, now-labeled 

pointcloud segment remains in the raw data format provided by the pointcloud sensor 

hardware. These labeled segments are ultimately intended for use in training neural 

networks capable of classifying pointclouds and this raw pointcloud format is not suitable 

for input to neural networks. Additional data transformation operations are necessary to 

convert a labeled pointcloud segment to a representation appropriate for input into a 

neural network  

6. Segment Transformation 

Training neural network-based classifiers on pointclouds requires special 

considerations, particularly with respect to dataset transformation operations. Dataset 

transformation is a key step in training neural network models and refers to the 

preprocessing conversion of raw training data to a format suitable for input to a neural 

network. For example, dominant contemporary neural network models require uniformly 

sized training set records. For example, when training 2D image classifiers all images 

might be resized to a fixed pixel height and fixed pixel width [12]. 3D pointcloud 

classifiers exhibit the same stringent training requirements with respect to needing fixed-

size input records. Pointclouds, however—even those representing the same object at 

different distances—can have vastly different densities. As such, our model applies a 

series of data transformation operations to the labeled, raw pointcloud segments produced 

during the previous steps of Phase 1.  

Performing a simple re-scaling operation on a 3D pointcloud, similar to those 

employed on the 2D image datasets, will not reduce the number of X, Y, and Z 

coordinate values nor address the requirement that training records be of uniform, fixed 

size. A common, established data transformation operation to resolve this issue is to 

employ volumetric pixels (voxels) to transform the raw pointcloud data in a labeled 

segment prior to training a neural network [8]. A voxel is a data structure containing a 

binary ON/OFF value indicating whether that unit of 3D space is occupied by at least one 

point in the pointcloud being represented. We propose using a 3D grid of voxels to 



 13 

represent our labeled pointcloud segment. This grid can be visualized as a stack of 

chessboard-like layers that divide a 3D space into equally-sized cubes. Under this 

scheme, any number of points in a pointcloud segment that occupy a given cube (voxel) 

can be distilled down to a single voxel’s binary ON/OFF value, making voxel grids an 

effective tool for homogenously representing variable-sized pointclouds with a fixed 

volume. Voxel grids, coupled with 3D scaling operations, allow pointcloud segments 

representing a wide range of physical objects to be transformed into fixed-sized neural 

network training inputs (e.g., a 20 x 20 x 20 voxel grid). Figure 6 and Figure 7 depict the 

data transformation process of converting a raw pointcloud segment to a voxelized 

representation of uniform volume. This transformation yields a labeled pointcloud 

segment in a data format suitable for use as a training input to a neural network.  

 

 Example of Raw LIDAR Pointcloud of an Excavator from the Sydney 
Urban Objects Dataset. Adapted from [29]. 



 14 

 

 Data Transformation of Figure 6’s Excavator to a Scaled, Translated, 
and Voxelized Representation. Adapted from [29]. 

7. Neural Network Training  

In aggregate, the labeled and voxelized pointcloud segments from the previous 

step form a dataset suitable for training a neural network pointcloud classifier. We 

propose following industry-standard best practices for neural network training, to include 

partitioning 80% of the dataset as a training set and reserving the remaining 20% as a test 

set to validate the model for accuracy and overfitting. Depending on the requirements of 

the application, merging similar class types, such as “car” and “truck” into a hybridized 

“4-wheeled vehicle” class may be appropriate. The training process produces a neural 

network pointcloud classification model suitable for rapid classification of pointcloud 

data, which completes Phase 1 of our model.  

B. PHASE 2: CONTEXT DISCOVERY 

Phase 2, context discovery, is the subject of exploratory research detailed in 

Chapter three. We provide an overview of the proposed process and then describe the 

steps for acquiring geotagged media, mapping spatial relationships, and populating a 

repository to archive these relationships.  



 15 

Scene recognition is an active area of research in computer vision, and has led to 

the creation of scene categorization databases, such as the “SceneNet” database [9]. We 

believe scene recognition could improve the performance of pointcloud classification by 

factoring in environmental context to weight classification results. Specifically, a 

database tailored to a specific physical environment and containing the likelihood of an 

object appearing in this environment, as well as each object’s likelihood of being co-

located with other known object types, could serve to boost the confidence value of 

classification results when operating in said environment. For example, a context 

database for the Naval Postgraduate School in Monterey, CA, might contain a strongly 

positive weight for the presence of objects typed “military officer” and might also have 

positive relationship weights for “military officer” and “flag” appearing in the same 

scene.  

Implementation of this approach requires a relationship database for various 

object pairings tailored to a specific physical operating environment. The manual creation 

of such a database would suffer from the same resource-intensive drawbacks as the 

manual pointcloud labeling that our research seeks to avoid. As such, Phase 2 also seeks 

to automate the context discovery process, primarily by performing object detection on 

geotagged media and populating a database containing object type relationships for a 

given location. We believe our Phase 2 proposal for context discovery, and the 

production of a corresponding database, could be leveraged to amplify the performance 

of pointcloud classifiers by applying pre-calculated geographically-localized scene 

context relationships to object classification results. Figure 8 provides an overview of 

Phase 2. 



 16 

 

 Flowchart of Phase 2, Context Discovery 

1. Acquisition of Geotagged Media  

The first step of Phase 2’s context discovery methodology requires foreknowledge 

of the intended physical operating environment, manifested as a latitude, longitude, and 

operating radius. Phase 2’s context discovery methodology proposes deploying software 

tools to search the Internet for media, such as photos or videos, containing metadata 

indicating the media was captured within the desired physical area. Several tools exist for 

broad Internet searching on specific locational metadata, known as geotags. For instance, 

both the Bing search engine and YouTube video sharing site provide API access to 

conduct metadata-based media searching on latitude, longitude, and radius for geotagged 

image and videos, respectively. During the media acquisition step of Phase 2, we further 

propose keyword searches, such as “outdoor” or “dashcam,” be appended to metadata 

searches to produce more targeted queries. Metadata-based queries yield links to media 

files recorded in the desired physical operating environment. Once acquired, each frame 

of the geotagged media files will be mined for relationship information using object 

detection tools. This information will then populate the scene context database. 

2. Object Detection  

In this step, we seek to identify relationships between objects in a given physical 

environment. To do so, we propose performing object detection on each geotagged media 

file previously collected in Phase 2. Object detection neural networks provide different 

output than image classification neural networks. Image classifiers output a single 

identification for a given image whereas object detection models provide multiple 



 17 

classifications per frame with bounding box localizations (see Figure 9). As such, we 

propose processing each geotagged frame through an object detector to identify objects 

appearing together in a frame. We interpret any resulting per-frame detections to indicate 

a spatial relationship between those object classes. For instance, a frame that yielded 

detections of a car, stop sign, and motorcycle would create three relationships, car-stop 

sign, car-motorcycle, and stop sign-motorcycle. Finally, similar to the previous step of 

bulk media downloading, the object detection processing can be parallelized and scaled 

to the level of available hardware processing capabilities.  

 
Classification provides a single identification per image. Object detection 
provides multiple, localized identifications per image. 

 Image Classification versus Object Detection. Adapted from [10]. 

3. Populate Scene Context Database  

Our final step of Phase 2’s context discovery process is populating a relational 

database. We propose populating a database with identified relationships between object 

types, weighted to indicate the prevalence of a pairing’s relationship, and a simple 

absolute count of the hits received by each object type in the geotagged media. As with 

image classification, object detection neural networks provide a confidence value for 

each detection and we propose applying a confidence thresholding scheme to these values 

to limit the insertion of low-confidence, incorrect relationships into the database. To store 

the relationships, we propose creating an 𝑁𝑁 × (𝑁𝑁 + 1) relational database containing a 



 18 

table and column for each object class, as well as a single static column storing the 

absolute count of identifications for a given object type. Our current implementation of 

Phase 2’s context discovery algorithm is limited to one specific physical location; 

however, it could trivially be extended to create relational databases for other locations 

prior to Phase 3’s classifier deployment.  

C. PHASE 3: REAL-TIME POINTCLOUD CLASSIFICATION 

The previous two phases of our model focused on pre-processing tasks to prepare 

for deployment of Phase 3’s real-time pointcloud classifier. The pointcloud classifier, 

once trained, has no requirement for an RGB camera sensor and also sheds the 

requirement to operate in strictly daylight conditions. Ideally, Phase 3 classification 

operations will employ only a solitary pointcloud-producing sensor and will remain 

viable in blackout conditions. While our research does not focus on the real-time 

classification component of the model, we layout a detailed description of our real-time 

pointcloud classification proposal to provide context and justification for our research. 

Figure 10 provides an overview of Phase 3. 

 

 Flowchart of Phase 3, Pointcloud Classification 



 19 

1. Classifier Preparation 

At the onset of mission deployment, we load Phase 1’s now-trained pointcloud 

neural network model into our machine learning toolset’s classifier and also load the 

relational database built in Phase 2.  

2. Pointcloud Collection 

Phase 3’s raw pointcloud collection and processing largely mimics the process 

detailed in Phase 1, with the exception that requirement for RGB collection in Phase 1 is 

removed. The RGB sensor’s purpose was producing 2D images for labeling the training 

datasets and, during Phase 3, the classification model has completed its training via those 

datasets. The removal of the camera requirement likewise removes the 2D-3D correlation 

step and the requirement to operate in well-lit operating conditions. As pointcloud data is 

collected by the hardware sensor, it is segmented and voxelized to prepare it for 

classification with a neural network. 

3. Pointcloud Segmentation 

Pointcloud data produced by an on-board hardware sensor must be transformed to 

a format consistent with the inputs originally used to train the pointcloud classification 

model in Phase 1. As such, we begin with pointcloud segmentation. Unlike during pre-

processing in Phase 1, Phase 3 has a real-time requirement, limiting the options for 

pointcloud segmentation to those capable of achieving near real-time performance. The 

resultant pointcloud segments from this processing represent discrete scene object and we 

next mimic the data transformation operations described in Phase 1 to match the format 

used to train Phase 1’s pointcloud classification model.  

4. Data Transformation 

Phase 3’s data transformation operations are the same as Phase 1’s, resulting in a 

fixed-size, voxelized, pointcloud segment representation. With the sensor’s pointcloud 

input transformed into a standardized format, the data is ready for classification by our 

trained pointcloud classifier.  



 20 

5. Classification by Neural Network 

Following data transformation, each pointcloud segment can be processed by the 

neural network pointcloud classification model trained during Phase 1. Consistent with 

Phase 3’s near real-time requirement, neural network classification operations are 

generally dramatically faster than training operations. In this step, each transformed 

pointcloud segment is processed by the classifier and returns a ranked list of 

identifications with confidence values. As discussed and noted in Figure 1, even top 

performing classifiers produce some level of classification error in their results and we 

explore several approaches to further limiting this error.  

6. Results Boosting 

To overcome inaccuracies in pointcloud segment classification results, we 

propose several means of boosting the performance of Phase 3’s pointcloud classifier. Up 

to this point, the classifier’s processing of segments evaluated each segment 

independently. We propose boosting its performance via temporal weighting between 

subsequent pointcloud frames. Given the highly accurate spatial representation provided 

by a pointcloud sensor, one could feasibly apply an Iterative Closest Point (ICP) 

algorithm to correlate current frame segments to high-confidence segments in previous 

frames, providing a Bayesian prior probability weighting to the classifier’s output list 

when identifying current frame segments. We assess integrating this approach has the 

potential to boost the accuracy of the classifier.  

We also propose boosting performance by leveraging the relational database 

created during Phase 2’s context discovery. Recall that in Phase 2 we produced a 

database tailored for a specific physical operating environment and containing the 

incidence rate of two object classes appearing alongside one another in a specific 

physical environment. We believe it possible to amplify the performance of the 

pointcloud classifier by applying the pre-calculated, geographically-localized scene 

context relationships in Phase 2’s database to our real-time pointcloud classification 

results.  



 21 

We propose two approaches to leverage Phase 2’s database. First, we look to 

apply static weights to the entire classification result list. Recall in Phase 2 the relational 

database maintained an absolute hit count for each object type detected in media 

geotagged to the operating environment. The absolute hit counts, normalized across all 

class types to sum to 1, are an indicator of the prominence of each object type in the 

operating environment. We add each normalized absolute count as a weight to its 

corresponding class type’s confidence value in the classifier’s result list. This weighting 

boosts the classification confidence of object types known to be present in the 

environment and has limited effect on those not encountered during Phase 2’s context 

discovery. Similarly, we propose adding normalized instance counts of scene pairings, 

identified during Phase 2, as weights to the classifier’s results list. Recall that in Phase 2 

our model identified spatial relationships between object types based on their co-location 

in geotagged video frames. We now apply those identified relationships to the real-time 

classifier’s results list. We intend to boost an identification’s confidence value based on 

other high confidence identifications in the scene and any spatial relationship recorded 

during Phase 2. 

For example, a pointcloud scene might contain several segments, with some 

receiving high-confidence classifications prior to any boosting. For scene segments with 

weaker confidence values, which might otherwise get filtered, we propose conducting a 

database lookup on the object types of the scene’s high confidence identifications, 

yielding an array of predetermined spatial relationships for the scene’s high confidence 

segments. These relationships, which contain the prevalence of two object types 

appearing in the same frame, represent a weighted spatial relationship. We add these 

weights to the unidentified segment’s classification results to boost the confidence values 

of its results, based on its known spatial relationships with other scene objects. For 

example, if a scene has a high confidence classification for an object of type “car,” each 

predetermined spatial relationship for type “car,” such as “stop sign,” “pedestrian,” and 

“truck,” would be boosted in the results list of any segments below the confidence 

threshold in the scene. In this example, a scene segment with results “baseball bat” and 

“stop sign” in its results list would have its “stop sign” result amplified based on “car’s” 



 22 

predetermined relationship with “stop sign” and the high-confidence identification of a 

“car” as another segment in the scene.  

7. Confidence Thresholding 

Our final proposed step of Phase 3 is to enact a confidence thresholding scheme 

similar to that seen in Phase 1. Despite efforts to boost our classifier’s accuracy, some 

results will remain low-confidence identifications and we seek to avoid providing these 

identifications by dropping any identification whose top-1 result falls below a selectable 

threshold. 

D. MODEL CONCLUSIONS 

The three phase model defined earlier provides a comprehensive, novel 

framework for pointcloud classification. We presented a methodology for automating the 

creation of training data for a pointcloud classifier (Phase 1), mapping out spatial 

relationships between object pairings (scene context) in an operating environment (Phase 

2), and integrating training data and scene context into a real-time pointcloud classifier 

(Phase 3). 



 23 

III. RELATED WORK 

We begin with a review of related works in the field of neural networks and 

pointcloud classification, followed by a more detailed review of related works and 

developments in the field of dataset creation for neural networks.  

A. NEURAL NETWORKS 

The theoretical basis for neural networks was first devised over 70 years ago [11]; 

however, groundbreaking research on deep neural networks in 2012 [12] were 

responsible for triggering drastic advances in neural network-based image classification 

performance over the last several years (Figure 1). These advances have been 

demonstrated at the annual ImageNet Large Scale Visual Recognition Competition 

(ILSVRC). One notable deep learning neural network model, Inception-v3, which won 

the ILSVRC 2014 competition [13], was trained on the 1000 object classes in the 

ImageNet photo dataset and currently boasts a 3.46% Top-5 error rate on the ImageNet 

validation image set [14]. More plainly, 96.54% of the time the Inception-v3 model will 

output the correct classification “guess” as one of the top 5 classification matches, when 

tested against the ImageNet validation set of images. Following these well-known 

advancements in 2D image recognition, deep neural networks were adapted to perform 

object recognition on 3D pointcloud data. Most notably, the VoxNet team developed 

techniques for transforming pointclouds into a data representation suitable for processing 

by neural networks [8]. VoxNet’s technique transforms each object’s pointcloud data into 

volumetric pixels (voxels) (see section 3.B.2) and represents each object in a fixed size 

3D occupancy grid. However, VoxNet’s reliance on voxels to train neural networks on 

pointcloud classification requires raw pointcloud scenes first being parsed into discrete 

objects, or segments. The availability of tools offering pointcloud segmentation via 

Euclidean clustering [15] and depth clustering [16], [53] provide the ability to filter raw 

pointcloud scenes down to segmented representations of discrete objects, suitable as 

inputs to neural network-based classifiers. We found that Depth Clustering generally 

produced accurate segments while segmenting LIDAR scenes imaged in outdoor 



 24 

environments lacking densely placed objects. Fast-paced advances in creating the 

pointcloud training datasets required by these neural networks, however, have not 

manifested [17] and are the focus of our research.  

B. DATASET CREATION 

Current techniques for labeling neural network datasets typically involve either 

bulk manual labeling by humans, commonly via crowdsourcing, or leveraging custom 

tools to assist humans in the tedious process of hand labeling. We first provide a 

discussion of hand annotation of datasets and the difficulty of creating datasets without 

the help of tools, and then explore leveraging software tools to increase the throughput of 

creating annotated training datasets. Our research focuses on automating the latter 

approach and, while there are no examples of fully automated LIDAR dataset creation 

pipelines available, we discuss other research in producing synthetic datasets that could 

feasibly be automated. We specifically highlight closely related work in [17], which 

clearly identified the difficulty of creating labeled 3D pointcloud data, noted that the lack 

of such data was a “bottleneck” in the advancement of 3D object recognition, and 

provided innovative techniques for pointcloud labeling.  

1. Hand Annotated Datasets 

The predominant approach to creating accurate, labeled datasets remains manual, 

human-involved labeling. Many historic and contemporary datasets, to include the 

MNIST handwriting sample dataset and the Pascal VOC dataset were created with 

human-involved labeling [18]. Historic datasets, such as the venerable Iris Flower dataset 

containing 150 samples [19], were the result of laborious hand labeling by a trained 

expert; however, advances in fee-for-service Internet crowd-sourcing tools, such as 

Amazon’s Mechanical Turk, have allowed for distributed creation of much larger labeled 

datasets by a non-expert human labor pool [20]. Unsurprisingly, significant quality 

control issues can arise when moving from human expert labeling to a distributed crowd-

sourced approach [21]. COCO, a dataset comprised of over 200,000 segmented and 

labeled images [22], and ImageNet, a dataset containing over 14 million labeled images 

[23], were created by employing a large human talent pool of annotators via the 



 25 

distributed crowdsourcing tool Mechanical Turk. Yet, despite crowd-sourcing its 

annotations, ImageNet boasts 99.7% accuracy with its labels. ImageNet achieved this 

accuracy by requiring multiple annotators to submit labels for a given image and then 

taking a majority vote from the results, limiting the insertion of incorrect labels into the 

dataset [24].  

The effort required for human labeling of large datasets is substantial, as 

evidenced by the stringent and complicated guidelines issued to human annotators of the 

Pascal VOC dataset [25], and remains a major barrier to new dataset creation and, 

subsequently, the training of neural networks on new problem sets. Pointcloud datasets, 

compared to 2D image-based datasets, require even greater effort to create, even when 

collected under controlled, indoor conditions with RGB-D cameras. For instance, the 

“RGB-D Objects Dataset,” characterized as a large dataset with over 300 household 

objects, was created by humans placing each object type on a rotating turntable for 

imaging and then hand labeling the resulting pointcloud [26]. The BigBird dataset also 

imaged objects with a turntable and effectively reduced the annotation time per object 

from 20 minutes down to five [27]. Other approaches, such as the “The Large Dataset of 

Object Scans” project, employed a team of 70 human operators with similar mobile 

scanning hardware to create a dataset of 10,000 pointcloud scans [28]. Clearly, the 

requirement to physically position an object on a turntable and waiting for it to rotate 

360-degrees to create a 3D pointcloud represents a significant expenditure of effort, 

particularly when compared to the relatively simple process of labeling a 2D image by 

drawing a polygon bounding box.  

2. Tool-Based Annotation of Datasets 

The Sydney Urban Objects Dataset is a popular, segmented LIDAR pointcloud 

dataset consisting of only 588 records, all of which were meticulously hand annotated 

[29]. Ongoing research seeks to create toolsets that lessen the burden of labeling such 3D 

pointcloud datasets [30], potentially enabling the creation of larger datasets. One industry 

leader in the creation of labeled datasets for autonomous vehicles, Mighty AI, has 

developed a slew of development tools to increase the throughput of human annotation 



 26 

across a range of dataset types, and has noted costly annotation times of approximately 

one worker-hour for full-frame, per-pixel outline segmentation and semantic annotation 

of a 2D image when selecting labels from a list of 75 classes [31]. Clearly, the 

expenditure of one worker-hour to hand label a single frame illustrates the difficulty of 

scaling some dataset creation tasks without tremendous allocation of resources, further 

demonstrating the need for automated dataset creation tools. One such tool, LabelMe, is 

an open source annotation tool that provides a polygon-drawing capability for human 

beings to segment and label images to a preselected range of classes [32]. Our research is 

complementary to these tools and techniques and seeks to improve upon them by further 

automating the annotation process. 

Hackel et al. [17] made a large dataset of labeled LIDAR data available under the 

Semantic3D.net project featuring a total of eight classes and developed two interesting 

tool-based approaches to label their large LIDAR dataset. For annotation in a 3D viewing 

environment, their approach required a human annotator to select only a small number of 

points from a desired object and then, once a predefined model type is selected, grows the 

selected pointcloud to contain surrounding points that also fit the model’s parameters 

[17]]. The model, once fit to the object and pruned for outlier points, was successfully 

employed by human annotators to segment objects and was able to “select large buildings 

in a couple of seconds” [17]. The Semantic3D team developed another tool-based 

approach to annotating that provided for easier navigation by the human annotator [17]. 

The technique involved the human annotator first selecting a camera viewpoint within the 

3D viewing environment, casting that viewpoint to a 2D viewpoint, and drawing a 2D 

bounding box around the desired object [17]. This process was repeated by the human 

annotator until the resulting intersection of these bounding boxes contained only inlier 3D 

points for the desired object [17]. The annotator would then assign a class label to the 

segmented points. This tool-based segmentation is slower than the Depth Clustering 

algorithm, but considerably faster than manually selecting individual points for 

segmentation. 

 



 27 

3. Synthetic Dataset Creation 

While we are not aware of a fully automated pipeline for labeling LIDAR 

datasets, we highlight other work capable of creating labeled datasets with limited human 

involvement, albeit with synthetic vice real-world datasets as input. Virtual 3D 

environments containing labeled 3D models provide opportunities for synthetic dataset 

creation. For example, the SceneNet project is capable of producing a nearly infinite 

amount of synthetic labeled 2D scene records [33]. SceneNet’s approach is to model an 

artificial 3D environment or scene, hand annotate the 3D objects as a one-time cost, and 

then create a nearly limitless amount of 2D representations of the labeled “scenes” by 

varying the location of a virtual camera to rasterize the frame [33]. While a different 

approach than our proposed pipeline, we highlight this approach as a technique for 

creating labeled datasets in a nearly automated fashion. 

 
  



 28 

THIS PAGE INTENTIONALLY LEFT BLANK  



 29 

IV. BACKGROUND 

Following the application of LIDAR for obstacle avoidance in the 2005 DARPA 

Grand Challenge, significant progress has been made in expanding the application space 

of LIDAR data via neural network-based object classification [3], [8], [34], [35]. As our 

research aims to advance the field of dataset creation for these LIDAR classifiers, we first 

provide an overview of the underlying technology, namely neural networks. We continue 

this discussion with an overview of pointclouds and their representation as voxels when 

processed by neural network-based classifiers.  

A. NEURAL NETWORKS 

We begin by providing an overview of neural networks themselves, followed by a 

discussion of TensorFlow and Inception, the specific machine learning toolset and pre-

trained model we employ during our Phase 1 implementation (see Section V).  

1. Overview of Neural Networks 

Machine learning-based computer vision has made tremendous strides over the 

last decade, largely through the application of neural network image classifiers [36]. The 

mathematical details of neural networks are beyond the scope of this research; however, a 

brief overview of their inner workings, capabilities, and training requirements is 

appropriate due their centrality to our research.  

Neural networks are defined as “a computing system made up of a number of 

simple, highly interconnected processing elements, which process information by their 

dynamic state response to external inputs” [37]. These processing elements are referred to 

as “nodes” and can be grouped into “layers” if a collection of nodes all operate on inputs 

from a previous layer and do not operate on inputs emanating from nodes within their 

own layer. At a minimum, neural networks typically have an input layer, which ingests 

external data to operate on, a series of internal “hidden” layers that have no external 

interface, and an output layer [38]. The output layer is responsible for ultimately 

providing the neural network’s response to the external input and, in the case of image 



 30 

classification neural networks, may contain one output node for each object class that the 

network is capable of classifying [39]. The output nodes each produce a numeric 

response to the given input, representing the output class’s correlation with the provided 

input. Further, neural networks generally require each input data record to be of uniform 

length which commonly requires data transformation operations be applied to datasets 

containing variable length records (see section 3.B.2). Figure 11 depicts a simple neural 

network.  

 

 A Simple Neural Network. Source: [40]. 

Neural networks, particularly “deep” neural networks involving many layers, can 

require a large amount of labeled training data ahead of time to produce accurate outputs 

during operation. For example, the 22-layer GoogLeNet model was trained on 1.2 million 

labeled images [39]. A trained neural network is capable of ingesting an unlabeled photo 

and outputting a ranked list of classifications for the content of the photo, alongside a 

confidence value reflecting how consistent the unlabeled photo is with a corresponding 

classification. The classification space is limited to the range of object classes (e.g. “car,” 

“dog,” etc.) that the neural network was trained on so, clearly, a neural network can only 

identify those objects that it was specifically trained to identify. Furthermore, this training 



 31 

data must be labeled (e.g., a photo of a dog must be labeled “dog”) ahead of time to allow 

for the neural network to learn the association between the pictured object and the output 

class. Creation of this labeled training data (“annotation”) remains a critical bottleneck in 

creating effective neural network-based classifiers and is described further in subsequent 

sections.  

2. TensorFlow and Inception 

Our research and proposed dataset creation pipeline relies on the machine 

learning toolset TensorFlow and the pre-trained neural network model Inception. 

TensorFlow is an open source, machine learning toolset developed by Google [41] and is 

the fastest growing tool for machine learning [42]. While it is possible to train neural 

networks “from scratch” with TensorFlow, our research creates labels from the output of 

a popular pre-trained image classifier model known as Inception, specifically, the third 

revision known as Inception-v3. Our pipeline’s image classification is conducted with an 

unmodified version of Inception-v3;  

B. POINTCLOUDS 

As our research focuses on dataset creation for LIDAR data classifiers, we 

provide an overview of pointclouds, a common data format for representing physical, 

LIDAR-imaged objects. We follow this overview with a detailed description of voxels 

and discuss the practice of voxelizing raw LIDAR pointclouds prior to training 

pointcloud-classifying neural networks.  

1. Pointcloud Overview 

A pointcloud is a collection of data points in a coordinate system, typically 

represented as X, Y, and Z coordinate values which depict the outer surface of an object 

[43]. In our pipeline, these values are represented using an East North Up (ENU) 

reference frame originating at the LIDAR’s laser (Figure 12). 

https://paperpile.com/c/Jft1pV/JUkK
https://paperpile.com/c/Jft1pV/V7Fk


 32 

 

 East-North-Up LIDAR Reference Frame 
Defining Pointclouds Coordinates 

Our research focuses on real-world pointclouds depicting physical objects, 

produced by a range of hardware sensors, including LIDAR, sonar, radar, stereo cameras 

and RGB-D cameras. While providing potentially highly-accurate spatial representations 

of objects, pointclouds collected by these sensors typically provide a low resolution 

representation of their surroundings than modern camera images. For instance, the 

highest fidelity LIDAR available, the Velodyne HDL-64e, which is largely reserved for 

research applications [44], provides a mere 64 lines of vertical resolution [45] whereas 

modern 4K cameras provide 2160 lines of vertical resolution. While limited in angular 

resolution, the pointclouds produced by this sensor are accurate to within 1.5 centimeters 

for objects in a 360-degree horizontal field of view [46]. These inherent features of 

LIDAR data require a unique approach when training neural networks to identify objects 

in LIDAR data. 



 33 

V. METHODOLOGY 

We focus our research’s implementation and experimentation on Phase 1 of our 

proposed model, automated dataset creation. We also conduct exploratory work on Phase 

2 of the model, context discovery, and provide our initial findings in support of future 

work. 

A. PHASE 1 IMPLEMENTATION 

We implement the four steps of Phase 1’s automated dataset creation by 

developing a pipeline architecture that conducts, in the following order, pointcloud 

segmentation, 3D-2D correlation, 2D classification, and confidence-level filtering. Our 

Phase 1 implementation is designed to produce labeled, high-confidence pointcloud 

segments without human intervention during the annotation process. For example, under 

ideal circumstances, the pipeline could output a cluster of laser returns (a pointcloud 

segment) containing the 3D representation of a stop sign and automatically label this 

collection of points, “stop sign.” More specifically, the pipeline’s implementation 

accomplishes this by ingesting synchronized LIDAR and camera data as inputs and 

outputs labeled pointcloud segments as ‘.pcd’ files. Our implementation’s approach to 

each step of Phase 1 will be discussed in the following sections and we note that the final 

step of Phase 1, training a neural network on the resultant dataset, is not handled by our 

pipeline or evaluated in our research. Figure 13 provides a graphical overview and 

represents our implementation of the Phase 1 model portrayed in Figure 3.  



 34 

 

 Implementation of Phase 1’s Automated Dataset Creation 

1. Synchronized Collection of Pointcloud and RGB Data 

The proposed processing pipeline for dataset creation requires the synchronized 

collection and fusion of 2D imagery with accurate 3D pointcloud data. While a variety of 

RGB-Depth sensors such as the Microsoft Kinect, known as “structured light sensors,” 

are well suited for the calibrated fusion of 2D imagery on 3D pointclouds, these sensors 

suffer from short maximum range as well as limited usefulness in brightly lit outdoor 

environments due to sun glint interfering with the depth sensor [47]. Further, affordable 

stereo cameras offering 3D pointcloud creation in outdoor environments and featuring 

small inter-ocular distances, such as StereoLabs ZED camera, are available, but do not 

offer the range of a Velodyne LIDAR sensor [48]. As such, the highly accurate, long-

range Velodyne HDL-32e was selected for 3D pointcloud creation and paired with an 

array of Logitech c920 RGB cameras. This configuration required the fabrication of a 

custom hardware collection platform and several open source software tools to conduct 

data collection. Figure 14 depicts a visualization of the raw data collected during this 



 35 

phase. Our pipeline loaded a manufacturer-provided calibration file for the LIDAR and 

did not correct for lens distortion on the c920. Synchronization of LIDAR and RGB data 

remains a concern for our implementation and future revisions may improve 

classification accuracy by replacing the c920 array with a calibrated, 360-degree camera 

such as the Ladybug®5 spherical imaging system.  

 

 Visualization of LIDAR Pointcloud and Camera Data Collected  

a. Tandem LIDAR+CAMERA Mount and Mobile Collection Unit 

We designed a mount plate with CAD software to hold the Velodyne HDL-32e 

scanning laser (LIDAR) and three Logitech c920 HD cameras. The three cameras are 

oriented at 90-degree offsets on the horizontal plane. A mobile collection box was also 

designed to house a 12V 9Ah lead acid battery, a Cyberpower 200W inverter, and a 

Velodyne LIDAR interface box featuring the LIDAR’s input/output. These components 

are depicted in Figure 15. A standard CAT5 Ethernet cable was used to transmit data 

from the interface box to our Dell XPS 9650. 

 



 36 

 

 From Left to Right, Top to Bottom: Cyberpower 200W Inverter, 12V 
Battery, Velodyne LIDAR Interface Box, and Fully Loaded Mobile 

Collection Box 

These two mounting accessories were 3D printed in PLA filament with 10% infill 

and attached to the roof of a passenger vehicle for data collection. Our CAD and 3D 

printable stereo lithography files have been made available under Appendix, Sections A-

D with an open source license. A CAD representation of the mobile collection box is 

depicted in Figure 16 and our fabrication process is depicted in Figure 17.  



 37 

  
From top left, top of mount, bottom of mount, internals of collection box, mount attached 
to mobile collection box 

 Collection Mount and Mobile Collection Box Design  



 38 

 
From upper left: printing mobile collection box in PLA with 10% infill, cutout of mobile 
collection box showing battery tray, mount latched to mobile collection box, full 
collection system with sensors 

 Collection Mount Fabrication Process  



 39 

In addition to the LIDAR and three HD cameras, data was collected with a Dell 

XPS15 9650 featuring a solid state drive (SSD), as well as a USB-C to USB-A dongle to 

enable simultaneous collection from all three cameras. The higher I/O capabilities offered 

by the SSD, relative to external USB hard drives with magnetic storage, were required to 

avoid dropping data during collection. While the physical mount plate can accommodate 

a total of four HD cameras, all data collection was limited to three cameras due to 

firmware-imposed restrictions on the maximum number of HD cameras per USB bus. 

Specifically, the c920 firmware does not allow more than one camera per USB bus and 

will abort attempts to initiate a camera stream when more than one camera is detected per 

USB bus. Our collection laptop had three USB buses which limited our collection to 

three simultaneous c920 camera streams. This restriction could be overcome in future 

pipeline iterations by replacing the c920 cameras with a single 360-degree camera.  

b. Collection Details  

Data collection was conducted in and around the Naval Postgraduate School 

campus in Monterey, California and on San Clemente Island, California. All data was 

collected with the tandem LIDAR and camera collection rig. The rig was mounted on the 

roof of a passenger vehicle and all data was collected while driving at an estimated 

maximum speed of 30 mph.  

c. LIDAR Hardware 

All pointcloud data was collected from a Velodyne HDL-32e LIDAR, a sensor 

capable of producing 700,000 3D points per second [49]. Data from the LIDAR was 

produced at a rate of 10Hz and was collected at a minimum range of 0.9 meters and 

maximum range of 130 meters.  

d. Camera Hardware 

2D camera data was collected from three Logitech c920 HD cameras oriented 90 

degrees apart. As the scanning LIDAR provides a 360-degree view of scene, the data 

processing pipeline could feasibly accommodate a full 360 degree 2D view as well. 

However, as indicted, data processing issues limited the collection to only three 



 40 

simultaneous camera feeds. Our tandem collection setup further limits the horizontal and 

vertical field of view (FOV) available to the pipeline. The c920’s horizontal FOV is 

approximately 70.42 degrees [50] leaving a nearly 20-degree gap between adjacent c920 

cameras that is not collected. Figure 18 depicts the effective horizontal FOV of our 

collection setup. 

 

 Horizontal Field of View of Camera and LIDAR Collection Rig. Only 
the Front Camera’s Collection Was Used for Testing. 



 41 

The c920’s vertical FOV is approximately 43.30 degrees and the LIDAR’s 

vertical FOV is 40 degrees, but the LIDAR’s vertical FOV is angled downward and 

ranges from +10 to -30 degrees. The overlap between these two sensors provides an 

effective vertical FOV of approximately 32.32 degrees (see Figure 19). Our pipeline 

addresses the inconsistent FOV capabilities of the two sensors by ignoring segments 

containing points that map to pixel locations beyond the camera’s horizontal or vertical 

FOV. This approach has the effect of missing opportunities to process segments as they 

transition out of the camera’s view.  

 

 32.32 Degree Vertical Field-of-View Available to Phase 1 Pipeline 

e. Robot Operating System nodes 

The Robot Operating System (ROS) provided the software infrastructure for 

processing and storing our LIDAR and camera data in a synchronized manner. ROS is a 

publish-subscribe message passing architecture designed for robotics and features a 

multitude of integrations for computer vision and pointcloud processing [51]. In addition 

to the core ROS infrastructure provided in all ROS applications, two additional ROS 

nodes were employed - usb_cam and velodyne_pointcloud. ROS nodes are parallel 

processes that communicate with a central ROS master node and typically pass messages 



 42 

to each other. Three instances of the usb_cam node were run during data collection to 

process three simultaneous streams of camera frames, with each video stream encoded 

with MJPEG compression at a resolution of 1920 x 1080 at 30Hz. RGB frames from the 

three cameras are published as ROS “sensor_msgs/CompressedImage” messages under 

the ROS topics “/usb_cam1/image_raw/compressed,” “/usb_cam2/image_raw/

compressed” and “/usb_cam3/image_raw/compressed.”  

Additionally, a velodyne_pointcloud ROS node ingested raw UDP data packets 

from the LIDAR and publish the data as ROS PointCloud2 messages on the topic 

“/velodyne_points.” Raw packets were also preserved in the data collection as ROS 

“VelodyneScan” messages and published under the topic “/velodyne_packets.”  

Archiving the synchronized LIDAR and camera data was done via ROS bag files. 

Bag files store specific ROS topics to disk as time series data and, in the case of the 

topics published for the LIDAR and three camera streams, the bag file archives grow at a 

rate of 2 gigabytes per minute. All bag file datasets are linked in the Appendix and can be 

played back in ROS for visualization in RViz.  

Figure 20 details the data collection process for creating synchronized LIDAR 

and camera datasets. Further, to expedite our evaluation of the Phase 1 implementation, 

we applied the velodyne_pointcloud node’s reprocessing functionality on the original 

LIDAR data. This reprocessing culled the LIDAR data to a maximum range of ten 

meters. We further configured our implementation to only create labels for pointcloud 

segments in the field of view of the front facing camera, further simplifying our 

evaluation in Section VI. These limitations can be removed in future implementations to 

achieve a wider field of view. 



 43 

 

 Collection of Synchronized LIDAR and Camera Data  

2. Pointcloud Segmentation 

For our pipeline, two segmentation approaches were evaluated: Difference of 

Normals (DON) segmentation and Depth Clustering segmentation. Difference of 

Normals segmentation, a technique implemented in the Point Cloud Library (PCL), 

combines surface normal calculation with Euclidean clustering to segment a 3D 

pointcloud [52]. This approach requires computationally intensive 3D vector math and 

took more than ten seconds to segment a single LIDAR frame from the HDL-32e with 

the Dell XPS15 9650’s Intel Core i7 CPU. Depth Clustering avoids the computationally 

intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead, 

creates 2D range images from LIDAR-derived depth values [53]. Depth Clustering 

segmentation also boasts a 1000x speedup over Euclidean Clustering methods [53] and 

allows for real-time segmentation of pointclouds from the HDL-32e on our development 

platform. More importantly, Depth Clustering segmentation was shown to produce 

pointcloud segments of similar quality to those produced using Euclidean Clustering [16]. 

Therefore, we opted to Depth Cluster our raw LIDAR scenes into segmented pointclouds.  



 44 

During the segmentation stage of the automated dataset creation pipeline, 

pointcloud segmentation was conducted with a modified version of the open-source 

Depth Clustering ROS node [16], [53]. This segmentation stage output ‘.pcd’ files, each 

containing a single unlabeled segmented pointcloud for processing in the subsequent 

stage. Figure 21 depicts Depth Clustering applied to single pointcloud scene, producing 

four pointcloud segments representing discrete physical objects. 

 
From left to right, segment identities are tree truck, SUV, hazard sign, and car. 

 Phase 1’s Segmentation Step Implemented Using Depth Clustering 

3. 3D-2D Correlation  

We implement Phase 1’s 3D-2D correlation step using the approach outlined in 

our model overview and applying it with the Logitech c920’s specifications. As noted, 

the c920’s horizontal FOV and vertical FOV are approximately 70.42 degrees and 43.30 

degrees, respectively. We configure the c920 to collect a full HD frame of 1920x1080 

pixels and, applying the formula described in our model outline, calculate a horizontal 

pixel-per-degree ratio of 27.26 pixels/degree and a vertical pixel-per-degree ratio of 



 45 

24.94 pixels/degree. Applying the arc tangent and linear translation operations described 

in our model’s 3D-2D correlation step, we show our implementation’s capability of 

mapping pointcloud segments to a synchronized 2D frame. NumPy (a data manipulation 

library) slicing operations are employed to simply crop the 2D frame to the bounding box 

defined during the 3D-2D correlation process [54]. OpenCV’s basic image processing 

operations are used to overlay correlated points and bounding boxes on the 2D frame for 

visualized feedback and debugging [55]. Figure 22 depicts a pointcloud representing a 

bush being correlated to a bounding box on a 2D image frame. 

 

 Implementation of 3D-2D Correlation of 3D Pointcloud Segment to 
Bounding Box on 2D Frame 

4. 2D Classification 

We implement Phase 1’s 2D classification step using industry-standard, neural 

network-based image classification tools. TensorFlow and Inception-V3, detailed in 

Section IV, analyze the 2D image crop produced during 3D-2D correlation and provide a 

list of plain English labels for the image crop selected from a total of 1000 available class 



 46 

types. As previously noted, the Inception architecture scale image input to uniform 

299x299 image dimensions and we allowed TensorFlow to handle all scaling and 

warping operations for our image crops. To accelerate Inception’s processing of 2D 

image crops into lists of prospective image labels, we leveraged an Nvidia GTX1050 

GPU. The results from Inception-v3’s classification processing were rank-ordered based 

on confidence value and needed to be filtered prior to insertion into our dataset. 

5. Confidence-Level Thresholding  

The final Phase 1 step implemented during our research was confidence-level 

thresholding. For the purposes of our research, we selected a default confidence threshold 

value of 70%, an arbitrary selection. A more thorough evaluation of a potential Phase 1 

confidence threshold values could improve future performance by determining an optimal 

value for a given environment. Our pipeline’s implementation of confidence-level 

thresholding simply discarded any pointcloud segment whose plain English label from 

Inception-v3 failed to breach 70%. Segments whose labels were greater than or equal to 

70% were added to the finished, high-confidence dataset comprised of labeled 

pointclouds. 

6. Phase 1 Steps Not Implemented 

Our implementation focused on the automated dataset creation portion of Phase 1 

and, as such, made no attempt to implement and evaluate our model’s finals steps of 

Phase 1: segment transformation and neural network training. However, other research 

has previously shown the validity of these two approaches in producing neural network-

based pointcloud classifications models [8].  

B. PHASE 1 EXPERIMENT SETUP 

We evaluate our Phase 1 implementation’s performance on two of the reprocessed 

dataset collections, referred to as “Neighborhood 1” and “Neighborhood 2,” which 

contain a variety of objects typical of suburban neighborhoods. Figure 23 shows the 

collection routes driven for the two datasets.  



 47 

 

 Map View of Routes for “Neighborhood 1” and “Neighborhood 2” 
Collections 

C. PHASE 1 CRITERIA FOR EVALUATION 

The criteria to measure the accuracy of the Phase 1 implementation is as follows. 

First, for each of the labeled pointcloud segments output by the pipeline, the resultant 

label is manually compared to the original cropped image and assessed for accuracy in 

labeling. This is necessary to determine whether a classification error is caused by 

Inception-v3. Second, each pointcloud segment is visualized and manually compared to 

its corresponding 2D crop. This step is necessary to detect two sources of error: 1) to 

determine whether a synchronization issue between the LIDAR frame and camera frame 

caused the 2D image crop to not contain the 3D pointcloud segment and 2) to determine 



 48 

whether a foreground object in the 2D image crop inappropriately produces a label for a 

3D pointcloud segment in the background (occlusion error). Cases that exhibited none of 

these errors are deemed “correctly” labeled and outputs containing any of the 

aforementioned errors are deemed “incorrectly” labeled. Of particular note, any four-

wheeled vehicle label is considered “correctly” labeled even in cases where the classifier 

produced an overly specific semantic label for the four-wheeled vehicle (e.g. “beach 

wagon”). Further, poorly segmented LIDAR frames can cause small artifacts to be 

improperly included in pointcloud segments. For instance, a segmented pointcloud 

containing a vehicle might contain a few errant points from an overhanging tree, or from 

surrounding pavement, that were not properly removed from the segmented pointcloud. 

These results are deemed acceptable. Further, pointcloud segments containing duplicated 

objects due to bad laser returns are ignored. For each raw dataset tested, the accuracy of 

the pipeline is evaluated based on the fraction of segments that qualify as “correctly” 

labeled relative to the total number of labeled segments produced by the pipeline. 

D. PHASE 2 EXPLORATION 

As additional research, we developed an implementation of Phase 2’s context 

discovery methodology. No attempt was made to evaluate the performance of our Phase 2 

implementation and we provide our design to shape future research. Our implementation 

executed the media acquisition step by bulk video scraping from YouTube, object 

detection through the YOLO9000 neural network, and the creation a customized SQL 

schema to create a SQL scene context database containing our results. Details of our 

implementation are as follows.  

1. Acquisition of Geotagged Media  

Phase 2’s initial step, acquisition of geotagged media, requires the collection of 

media files recorded in a specific operating environment. Our exploratory research 

focused on identifying geotagged YouTube videos and used Google’s API to conduct 

search queries for videos recorded in the desired area, providing a large list of URLs for 

videos meeting our search criteria. Google’s search API does not offer download 

capability, however, the open source youtube-dl python module was used to bulk-



 49 

download the large list of YouTube video URLs returned by our API search. As such, we 

demonstrated the ability to script the bulk downloading of geotagged videos assessed to 

have been recorded in our targeted operating environment. These files represent a large 

pool of media from our operating environment and hold important information on the 

spatial relationships between objects in that environment. To uncover these relationships, 

we process each file through an object detection neural network during the next step in 

Phase 2. 

2. Object Detection 

The object detection step of Phase 2 maps out information on the prevalence of 

specific object types in a specific operating environment, as well as the spatial 

relationships between these object types. During our exploratory work on Phase 2’s 

object detection step, we employed the YOLO9000 object detection neural network as a 

fast mechanism to evaluate each frame of every video previously scraped during Phase 

2’s media acquisition step. Our implementation was shown to process five concurrent 

videos for object detection and relationship identification on a 16-core/32-thread Xeon 

CPU with nVidia Quadro M5000 GPU. YOLO9000 provided object detection 

classifications on frames that contained only a solitary identifiable object and on frames 

with multiple objects. In the subsequent step, both of these results get archived as an 

absolute detection count and as weighted relationship identifications, respectively.  

3. Populate Scene Context Database 

The final step of Phase 2 involved populating our object detection results into a 

“scene context” database. In our exploratory implementation, we developed a custom 

SQL schema implementing our model’s outlined approach for the YOLO9000 class 

space. Executing our SQL schema using the MySQL interface, we created a database 

containing 9418 tables, one for each of YOLO9000’s classes. Each table was designed to 

accommodate up to 9419 column entries, with 9418 representing weighted object 

relationships identified through object detection and a single column indicating the total 

number of identifications for each object type. Our implementation’s SQL schema also 

contained a lookup table to translate between the cryptic synset identifiers used by 



 50 

YOLO9000, such as “n03417042,” to plain English names such as “garbage truck.” 

Lastly, our implementation maintained an additional table to track the YouTube video 

tags, a unique portion of a YouTube video’s URL, already processed during context 

discovery. This table was crucial to avoid repeatedly re-processing videos when building 

the database over multiple sessions. 

Figure 24 shows a more easily visualized Phase 2 implementation based on a 

smaller 90-class COCO model vice the 9418 classes used by YOLO9000. The left side of 

the diagram, which depicts the 90 tables created for COCO’s class space, is exploded to 

reveal a single table corresponding to “parking meter.” This example illustrates the 

results surfaced for “parking meter” objects while processing geotagged media through 

the object detection step of Phase 2. Specifically, Figure 24 indicates 60 instances of 

parking meter were detected in the geotagged media, which we refer to as the absolute 

detection count. Further, three spatial relationships were identified for objects of type 

“parking meter.” Specifically, a relatively strong spatial relationship between “parking 

meter” and “car” was identified, judging by the instance count of 10, and a relatively 

weaker spatial relationship was uncovered between “parking meter” and “person” and 

“parking meter” and “truck,” based on their low instance counts.  



 51 

 

 “Scene Context” Database Table for “Parking Meter.” Shows Weighted 
Relationship with “Car,” “Person,” and “Truck.” 

We further provide a visualization (Figure 25) of the entirety of spatial 

relationships mapped out by our Phase 2 implementation on the COCO class space. This 

particular 90x90 visualization shows each object type’s absolute hit count as the 

dominant diagonal values, with spatial relationships between object types depicted as 

intersecting values of the graph’s 3D grid.  



 52 

 

 Zoomed-Out Visualization of Entire “Scene Context” Database 
Containing Relationship Weights between Objects in a Specific 

Physical Environment 

We note that the relationships discovered as part of our Phase 2 implementation 

required no human intervention, beyond selecting a targeted physical environment. 

However, significant additional research is in order to assess the accuracy of our Phase 2 

implementation. 



 53 

VI. ERROR ANALYSIS 

The model presented in Chapter II encompasses three phases, with each phase 

providing sources of error affecting the model’s performance. The implementation 

developed for our research focused on Phase 1’s automated dataset creation and we 

provide an analysis of potential errors affecting Phase 1’s performance.  

A. PHASE 1 ERROR SOURCES 

Phase 1, automated dataset creation, suffers from several types of error with 

varying levels of frequency. Further, errors can percolate and compound throughout 

multi-stage pipelines, causing unexpected behaviors in the output. As such, we 

methodically review sources of error for each step of Phase 1.  

1. Synchronized Collection Error 

Synchronization issues persisted within our Phase 1 implementation, which 

manifested as poorly mapped bounding boxes during the 3D-2D correlation process. At 

distances further than a few meters, the impact of sync issues was lessened with respect 

to the implementation’s labeling process. This was due to distant objects moving more 

slowly across a frame, lessening the impact of synchronization errors on distant objects 

during the 3D-2D correlation process. The ROS bag file format archived LIDAR and 

camera messages as they arrived; however, some sync issues persisted. The 

implementation’s output, depicted in Figure 26, showed behavior consistent with LIDAR 

data being mapped onto “stale” camera frames. Analysis indicated the LIDAR data 

collected was approximately 170 milliseconds ahead of the camera data, approximately 5 

camera frames. The effect of this temporal offset was, in some cases, substantial. As 

depicted in Figure 26, a cropped bounding box surrounding the blue colored LIDAR 

segment would almost completely miss the intended lamppost pixels -- making it 

impossible for TensorFlow to properly determine a label of “lamppost” for such a crop. A 

calibration solution that manually measured the offset might help resolve the sync issues 

with a frame skipping solution. 



 54 

 

 LIDAR Segment Out of Sync with Camera Frame 

Other collection errors impacted our model’s implementation as well, albeit to a 

much lesser degree. The raw collection produced by our LIDAR sensor could return a 

“ghosted” second representation of an object it imaged, giving the impression that the 

LIDAR inappropriately processed multiple laser returns for the same object. Figure 27 

depicts this behavior on a street sign. Notice Figure 27’s overhead representation of the 

segment being processed within the black-background window named “segment.” The 

pointcloud segment collected by the LIDAR clearly shows two distinct street signs 

whereas the ground-truth representation of the scene provided by the RGB camera shows 

no second street sign. This source of error was exceptionally rare during development of 

our Phase 1 implementation, however, future work could increase the accuracy of our 

implementation by addressing this issue.  



 55 

 

 LIDAR Collection Error; Ghosted Pointcloud Segment 

We assess that this “ghosting” effect is due to mismatch between the LIDAR’s 

frame of reference and the continuous scanning of the LIDAR hardware. The HDL-32e 

LIDAR generates a new 360-degree pointcloud scene every 100ms by rotating an array 

of 32 vertically-aligned lasers around the sensor’s Z-axis. As such, each pointcloud point 

along a given horizontal plane gets imaged at a different moment. The simultaneous 

movement of our collection vehicle causes the LIDAR’s frame of reference to change 

slightly during these 100ms scans. The effect shown in Figure 27 may be the result of 

these factors. Specifically, we hypothesize that the LIDAR’s vertical array of lasers first 

image the sign and generate the leftmost representation in Figure 27. Subsequently, the 

vehicle moves forward and shifts the LIDAR’s frame of reference. Finally, the LIDAR 

again images the physical sign during the scan, generating Figure 27’s rightmost sign 

representation. 

Another source of potential error in our Phase 1 model stems from errant laser 

returns in our raw collection. Our implementation exhibited errant, outlier laser returns 

that were random and limited in density. As such, these errant points never met threshold 



 56 

to qualify as valid pointcloud segments by the Depth Clustering algorithm and had no 

impact on the accuracy of our final dataset. Figure 28 depicts one such errant laser return 

mapped onto a camera frame. Notice the lack of any physical object in the location of the 

solitary laser return in the center of the frame.  

 

 Errant Laser Return Revealed during 3D-2D Correlation  

2. Pointcloud Segmentation Error 

Our Phase 1 implementation modified a proven, open-source Depth Clustering 

ROS node to conduct LIDAR scene segmentation. However, some segmentation of 

pointcloud scenes resulted in segments containing multiple discrete scene objects. Figure 

29 shows an example of this behavior while using our implementation’s segmentation 

technique and it represented a source of error in our finalized dataset. As with the case of 

Figure 29, the bulk of LIDAR points belong to the parked vehicle not the two street signs, 

however, a 2D crop of the bounding box, when processed by a 2D image classifier, led to 

inconsistent labels getting produced for segments containing multiple scene objects.  



 57 

 

 Vehicle and Signs Segmented as a Single Object 

3. 3D-2D Correlation Error 

The error imposed by 3D-2D correlation on our Phase 1 implementation was 

subtle and had little impact due to the robustness of our 2D image classifier. These types 

of errors spawn from not accurately mapping a 3D point onto the 2D image used to create 

a segment’s label. As such, these errors can have the effect of shifting the 2D image crop 

off the correct location of the physical object within the frame. This is distinct from 

correlation errors caused by poor synchronization between the LIDAR and camera 

sensors, which also cause the 2D image crop to be shifted away from the intended object. 

Figure 30 visualizes the impact of subtle 3D-2D correlation error. In Figure 30, the 

collection platform is moving towards the center of the frame, between the highlighted 

rooftop and highlighted pole. We assess Figure 30 exhibits 3D-2D correlation error 

because a synchronization error would, in this case, map both the rooftop points and pole 

points to pixels on the outer edge or inner edge of the objects on the 2D frame. In Figure 

30 both the pole and rooftop’s points are mapped to their left edge, which could only be 

triggered by a sync issue if the vehicle was turning. We found these offsets to be subtle 

relative to the error incurred from synchronization and we assess they may be the easiest 



 58 

source of error to remedy. The integration of a pre-calibrated 360-degree camera, or 

manually calibrating the cameras from our current implementation, may limit this source 

of error.  

 
LIDAR points mapping to left of objects located on left and right edge of frame (pole and 
rooftop) as collection platform drives between them.  

 Horizontal 3D-2D Correlation Error 

4. 2D Classification Error 

Our Phase 1 model’s reliance on 2D image classification presents a clear source 

of potential error, as any inaccurately labeled segments have the potential to be inserted 

into the dataset. Our Phase 1 implementation, which relied on Inception-v3 for 2D image 

classification, struggled with accurately identifying many small image crops as shown in 

Figure 31’s classification of tree leaves as “bald eagle, albeit with 3% confidence. Low-

confidence, incorrect classification results such as seen in Figure 31 have no impact on 

Phase 1’s accuracy because they are easily filtered out by the confidence-level filter.  



 59 

 

 2D Image Classification Error 

Another source of error in Phase 1’s 2D image classification step is occlusion. 

While processing the collected dataset through our implementation, the labeling of distant 

objects showed sensitivity to foreground occlusion. Specifically, a properly segmented 

LIDAR pointcloud might have some portion of its correlated 2D image crop contain a 

foreground object. This foreground object could dominate the 2D image classification 

processing of a 2D crop and incorrectly assign the foreground object’s label to the 

pointcloud segment of a background object. Figure 32 provides an example of a 

pointcloud segment representing a tree receiving a label of “convertible car” due to the 

presence of a car’s hood in the 2D crop.  



 60 

 

 Occlusion Example. Tree Pointcloud Segment Labeled as Car Due to 
Foreground of Image Crop. 

A more careful scheme for calculating bounding boxes, such as one conducting 

ray casting on each unlabeled segment for collision testing with other pointcloud 

segments in the scene, could limit the impact of foreground occlusion on our 

implementation.  

5. Confidence-Level Thresholding Error  

Perhaps the most disappointing type of error exhibited by our Phase 1 

implementation are the instances of high-confidence, yet incorrect results which make it 

past the confidence value thresholding filter. While most incorrect 2D image crop 

classifications are filtered due to low confidence levels, there are periodic instances of 

small image crops that are incorrectly labeled by Inception-v3. Figure 33 depicts our 

implementation attempting to label a small LIDAR segment containing a portion of a 

tree. The small 3D pointcloud segment in turn produces a small 2D image crop, which is 

labeled as a “bearskin” with a 65% confidence value. While slightly below our proposed 



 61 

70% threshold, this result illustrates the potential for incorrectly labeled segments to be 

inserted into the final dataset. 

 

 Incorrect, High-Confidence Pointcloud Label of “Bearskin” for Tree 

Without more context (e.g., a larger 2D crop of the object and surroundings), it 

may not be possible for a 2D image classifier to label these types of crops. However, 

enlarging the 2D crops with a buffer of additional pixels around the crop’s perimeter 

could increase occlusion errors. Further, improvements to 2D image classifiers’ 

capabilities with respect to labeling small image fragments, or employing a more 

sophisticated scheme for pre-processing small image crops prior to classification, could 

significantly improve our implementation’s performance in this area. 

  



 62 

THIS PAGE INTENTIONALLY LEFT BLANK  



 63 

VII. RESULTS 

Evaluation of our implementation of Phase 1’s automated dataset creation found it 

capable of producing valid, labeled pointcloud segments with varying levels of accuracy. 

We first assess the suitability of our Phase 1 implementation’s functionality and then 

measure the accuracy of its labeled dataset output.  

A. PHASE 1 FUNCTIONALITY 

Our Phase 1 implementation processes synchronized LIDAR and camera input 

and, in many cases, outputs a properly labeled LIDAR pointcloud segment alongside the 

accompanying 2D image crop. Figure 34 depicts the properly functioning pipeline 

operating on the dataset collected - the automated pipeline applying a correct ”street 

sign” label to a corresponding LIDAR pointcloud segment.  

 
LIDAR Segment Properly Labeled as “Street Sign” based on the 2D Image Classification 
of the Corresponding Image Crop 

 Example of Phase 1 Implementation Output 



 64 

B. PHASE 1 PERFORMANCE 

The dataset “Neighborhood 1” was processed through the automated pipeline and 

created a total of 41 labeled pointcloud segments from a collection duration of 346 

seconds. Based on the following criteria, we judge the pipeline to have produced 31 

correctly labeled pointcloud segments and ten incorrectly labeled pointcloud segments, 

representing a 75.6% accuracy (Figure 35). A detailed analysis of the “Neighborhood 1” 

results is provided in the Appendix, Section H.  

 

 Pipeline Performance on “Neighborhood 1” Dataset in Producing 
Correctly Labeled Pointcloud Segments 

1. Sources of Pipeline Error 

The ten incorrectly labeled segments suffered from incorrect image classification, 

synchronization issues, and occlusion errors. The two incorrect image classification 

results were not necessarily due to poor accuracy in Inception-v3’s classification but, 

instead, were due to extremely small image crops being fed into Inception-v3. For 

context, our implementation neglected to do any filtering of small image crops and, 



 65 

therefore, allowed Inception-v3 to automatically upscale and warp aspect ratios to its 

299x299 standardized input dimensions. Small image crops, a result of small pointcloud 

segments, can occur in the pipeline when an imperfect segment is created or, more 

frequently, when an object slowly moves into the LIDAR’s field of view, causing it to 

capture only a sliver of the object. The latter circumstance was the likely cause in both of 

these instances. In one case, a small slice of a tree produced a very small, dark, and 

splotched image crop that very closely resembled a bearskin, leading to a high 

confidence, yet incorrect semantic label. This behavior could likely be mitigated by 

ignoring segments on the periphery of the LIDAR scene or, possibly, by imposing a 

minimum pointcloud size. A single output of the 41 results was incorrect due to 

synchronization issues. This case, a thin pole, was illustrative of the narrow 

circumstances where synchronization could trigger an incorrect result not being filtered 

from the results. Inception-v3 is capable of classifying objects only partially contained 

within an image crop, adding significant robustness when encountering unsynchronized 

LIDAR and camera data. However, LIDAR segments containing very thin objects have 

the potential to be entirely out of frame during the cropping process, ultimately feeding 

an image crop to Inception-v3 that doesn’t contain the intended object whatsoever. 

Reviewing this pole’s long and thin image crop, the intent to capture a pole was obvious 

and this incorrect semantic label was clearly a victim of unsynchronized data streams. 

The primary source of error was occlusion error, with six of the 41 results 

exhibiting this trait. In all six cases, the cropped frame contained multiple objects and 

Inception-v3 correctly classified an unintended object, one which did not match the 

corresponding segmented pointcloud. As the data was collected in a suburban 

environment, it was common for trees or vehicles to enter the foreground of cropped 

image, raising the potential for Inception-v3 to classify that object instead. Interestingly, 

in some cases, the reverse occurred as well, with Inception-v3 correctly classifying a 

distant background object instead of the intended foreground object. To mitigate this 

behavior, a more exacting approach to creating image crops would be required to avoid 

including unintended background or foreground objects.  



 66 

Lastly, one result received a correct label, but was deemed incorrect due to the 

pointcloud segment being small and difficult to definitively identify as the same object in 

the crop.  

The pipeline was subsequently run on the “Neighborhood 2” dataset, which 

measured 317 seconds in length, and achieved greater accuracy (see Figure 36). This 

second test produced a total of 35 labeled segments with 31 evaluated as “correct” and 

four as “incorrect.” A detailed analysis of the “Neighborhood 2” results is provided in the 

Appendix, Section I.  

 

 Pipeline Performance on “Neighborhood 2” Dataset in Producing 
Correctly Labeled Pointcloud Segments 

The pipeline performed better on this dataset due to the higher incidence of 

vehicles compared to Neighborhood 1, as the pipeline is able to consistently produce 

vehicle labels. Two of the four incorrect labels suffered from synchronization errors due 

to the image crop not containing the appropriate object, and the remaining two incorrect 



 67 

labels stemmed from poor segmentation and classification of a background object instead 

of the intended foreground object.  

The aggregate performance of the pipeline, when combining the results of both 

datasets Neighborhood 1 and Neighborhood 2, reached the level of 81.6% accuracy (see 

Figure 37). With the two collection’s combined duration of 663 seconds, the pipeline 

created a correctly labeled segment every 10.7 seconds and an incorrectly labeled 

segment every 47.4 seconds. The diversity of the resultant labeled dataset was extremely 

limited due to time-imposed practical constraints. As previously noted, the area processed 

by our pipeline was directly in front of the collection vehicle and the collection was 

culled to 10 meters of maximum depth with a 70-degree horizontal field of view. This 

culling largely limited the ground-truth diversity of object types available for 

classification to a mixture of street objects, such as parked vehicles, street signs, 

motorcycles, and landscaping. Most of the physical space processed by the pipeline 

contained open road. This produced a dataset heavily biased towards our limited 

collection environment, with Neighborhood 1’s results comprised of over 50% vehicles. 

Moreover, 100% of Neighborhood 2’s correctly labeled results were from vehicles. Our 

implementation requires testing in different operating environments to assess its 

effectiveness in producing diverse datasets.  



 68 

 

 Aggregate Performance of Automated Dataset Creation Pipeline 

2. Comparison to Human Performance 

Comparison to human performance in hand annotation is exceedingly difficult 

due to varying levels of human performance and variations in human background 

knowledge of the classification ontology (e.g. 1000 classes in ImageNet) [1]. Most 

relevant, even when measuring human performance on a Top-5 evaluation basis (e.g., any 

the top 5 “guesses” are considered when judging a correct classification), human 

annotation error rates on samples from the ImageNet dataset ranged from 5.1% - 12% [1], 

with less rigorous data showing untrained annotators achieving a meager 15% Top-5 

error rate [1], [7]. Top-1 error rates for human annotation are likely significantly higher 

than the 5.1 - 15% error rate achieved with the Top-5 evaluation method. As our pipeline 

relies on Top-1 labels and is not able to leverage the menu of labels provided by Top-5 

results, we characterize the upper bound on Top-1 accuracy for human annotation at 

approximately 85 - 95% for the 1000 class ImageNet dataset. For comparison, our 

pipeline, which relies on the Top-1 result for labeling LIDAR data, achieved a combined 

accuracy of 81.5%, with 62 correctly labeled pointclouds and 14 incorrectly labeled 



 69 

pointclouds. Conservatively, this 81.5% accuracy of LIDAR data is comparable to the 85 

- 95% Top-1 accuracy of human annotation of 2D images; however, it is our assessment 

that, in practice, human performance on hand labeling low resolution LIDAR segments 

could be considerably lower than 85 - 95% accurate without the help of additional 

annotation tools or significant investment of time in training human operators to 

recognize objects within low resolution LIDAR pointclouds. Further, we assess that 

human validation of class labels assigned by the pipeline is faster than human-based 

annotation from scratch, particularly when assigning labels from a large list of class types 

such as ImageNet’s 1000 class types.  

 

 

  



 70 

THIS PAGE INTENTIONALLY LEFT BLANK  



 71 

VIII. CONCLUSIONS  

Our research sought to evaluate whether state-of-the-art 2D image classification 

neural networks can create labeled training data for pointcloud-based neural network 

classifiers. In pursuit of our research question, we created an automated pipeline for 

creating labeled LIDAR data that combined the automated image classification and 

pointcloud segmentation capabilities of TensorFlow’s Inception-v3 and Depth Clustering, 

respectively. We provide our conclusions regarding the effectiveness of this approach, as 

well as an overview of potential areas for future work in this field.  

A. AUTOMATED DATASET CREATION CONCLUSIONS 

Our initial results were promising, but require additional research to show the 

advantages of our model over established dataset creation techniques. Our pipeline only 

showed 81.6% accuracy of labeled data outputs and our pipeline’s throughput was 

limited, averaging only one correctly labeled segment every 10.7 seconds of raw data. 

Moreover, our implementation’s ability to produce diverse datasets is unknown, as we 

produced two datasets containing very few object types. Lastly, compared to established 

pointcloud annotation techniques, our model has the added burden of a second hardware 

sensor (RGB sensor) and its labeling capabilities are constrained to the class space of 

existing 2D image classifiers, whereas human beings could feasibly label a much larger 

range of objects.  

The pipeline’s output could be useful as a “first draft” of a finalized training 

dataset, particularly for problem sets with extremely large quantities of raw data that 

would otherwise be untenable to hand annotate. Specifically, the pipeline is scalable and 

could be parallelized to process large datasets that are currently restricted to human 

crowdsourcing techniques. A “first draft” approach might leverage the pipeline to provide 

an initial dataset with approximately 80% accuracy, leaving a human annotator to simply 

validate the results. Additional research is required to determine whether such an 

approach would offer improvements over existing hand annotation approaches.  



 72 

Given the wide range of remaining issues with the creation of training datasets for 

neural networks, which are likely to hold back the application of neural networks to a 

variety of problem sets, it is paramount to continue developing efficient tool-based 

approaches, such as the pipeline proposed here, and ensure that existing datasets are fully 

utilized.  

B. FUTURE WORK 

The accuracy of the pipeline’s annotations leaves significant room for 

improvement. In addition to improvements to the model’s implementation, we posit that 

future improvements in industry-standard 2D image classification performance could 

have a direct benefit to our model’s accuracy performance. In closing, given the 

difficulties associated with creating these labeled training datasets, we propose 

establishing a centralized database to retain and maximum the utility of existing training 

datasets.  

1. Dataset Database 

Moving forward, as neural networks become integral to ever-larger numbers 

systems, an increasing amount of labeled training data will be required, likely created at 

significant expense, in order to train these systems. To maximize the benefit of the 

substantial cost of creating this labeled training data, the machine learning community 

could further encourage the use of community-wide repositories for labeled training 

datasets.  We assess this could help offset the one-time cost of dataset creation by 

amortizing their use across multiple applications. While some labeled datasets may be 

created for niche applications with limited options for reuse, others will likely contain 

more common objects, such as vehicles, and present clear opportunities for reuse in other 

applications.  



 73 

APPENDIX 

A. TANDEM LIDAR AND CAMERA MOUNT TOP PLATE CAD 
DRAWINGS 

https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/
Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.skp 

 

B. TANDEM LIDAR AND CAMERA MOUNT MOBILE COLLECTION BOX 
CAD DRAWINGS 

https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/
Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.skp 

 

C. TANDEM LIDAR AND CAMERA MOUNT TOP PLATE 
STEREOLITHOGRAPHY FILES 

https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/
Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.stl 

 

D. TANDEM LIDAR AND CAMERA MOUNT MOBILE COLLECTION 
STEREOLITHOGRAPHY FILES 

https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/
Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.stl 

 

E. NEIGHBORHOOD 1 DATASET 

The Neighborhood 1 dataset collected as part of this thesis is available at 

https://wiki.nps.edu/x/RwAxNw 

 

F. NEIGHBORHOOD 2 DATASET 

The Neighborhood 2 dataset collected as part of this thesis is available at 

https://wiki.nps.edu/x/RwAxNw 

G. ADDITIONAL DATASETS 

The following additional datasets were collected as part of this thesis:  

https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.skp
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.skp
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.skp
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.skp
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.stl
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/LIDAR_and_4_camera_tandem_mount.stl
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.stl
https://gitlab.com/chambana/LIDAR_Object_Recognition/blob/master/Tandem_LIDAR_and_RGB_Mount/CAD/mobile_collection_box.stl
https://wiki.nps.edu/x/RwAxNw
https://wiki.nps.edu/x/RwAxNw


 74 

NPS Tandem LIDAR Camera Data (San Clemente Island, CA) 

NPS Tandem LIDAR Camera Data (Campus) 

They are available at https://wiki.nps.edu/x/RwAxNw 

H. SEGMENT ANALYSIS OF NEIGHBORHOOD 1 DATASET 

 
filename 

suffix 
>70% 
label 

2D image 
contents 

3D 
segment 
contents 

2D 
matches 

3D? 

Accurately 
labeled 

pointcloud? 

comments 

8312 beach 
wagon 

SUV SUV yes yes segment has tree 
artifact over car 

8715 bear skin black and gray 
pixels, 
probably 
foliage 

probably 
foliage, 
very sparse 

yes, but 
not a bear 
skin 

no really small crop 

8684 convertible car door car door yes yes  
20740 crash 

helmet 
long empty 
image, 
background 

likely pole 
or tree 
trunk 

no no sync error made 
the 2D crop miss 
the object 

16088 fire engine back corner of 
vehicle 

likely back 
corner of 
vehicle 

yes yes  

10747 minivan foreground car 
background 
tree 

tree no no occlusion. good 
2D classification 
of foreground 
object 

15926 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15930 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15933 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15937 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15940 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15946 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

15949 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

16137 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

20546 minivan back of 
minivan 

back of 
minivan 

yes yes  

22195 minivan front corner of 
vehicle 

front corner 
of vehicle 

yes yes  

22202 minivan front corner of 
vehicle 

front corner 
of vehicle 

yes yes  

https://wiki.nps.edu/x/RwAxNw


 75 

22388 minivan back corner of 
vehicle 

back corner 
of vehicle 

yes yes  

22680 minivan side doors of 
vehicle 

unknown unknown no possible match, 
but small 
segment is 
difficult to discern 

11082 mobile 
home 

foreground 
tree, home 
background 

tree no no occlusion. good 
2D classification 
of foreground 
object 

11094 mobile 
home 

foreground 
tree, home 
background 

tree no no occlusion. good 
2D classification 
of foreground 
object 

25162 motor 
scooter 

motor scooter motor 
scooter 

yes yes  

25174 motor 
scooter 

motor scooter motor 
scooter 

yes yes small artifacts 

25184 motor 
scooter 

back half of 
motor scooter 

likely back 
half of 
motor 
scooter 

yes yes very sparse 
segment 

25209 motor 
scooter 

middle section 
of motor 
scooter 

likely 
middle 
section of 
motor 
scooter 

yes 
(likely) 

yes very sparse 
segment 

10493 picket 
fence 

foreground 
tree, fence 
background 

tree yes no occlusion. good 
2D classification 
of foreground 
object 

22455 Polaroid 
camera 

lower front 
bumper of car 

lower front 
bumper of 
car 

yes no very small crop 

8797 police van back half of 
pickup truck 

back half of 
pickup truck 

yes yes  

8822 police van back half of 
pickup truck 

back half of 
pickup truck 

yes yes  

12850 racer foreground 
stop sign, 
background 
car 

stop sign yes no occlusion. good 
2D classification 
of background 
object 

12855 racer foreground 
stop sign, 
background 
car 

stop sign yes no occlusion. good 
2D classification 
of background 
object 

9534 street sign street sign street sign yes yes  
9547 street sign street sign street sign yes yes  

16787 street sign street sign street sign yes yes  
16788 street sign street sign street sign yes yes  



 76 

16792 street sign street sign street sign yes yes  

16795 street sign street sign street sign yes yes foliage artifact 
16798 street sign street sign street sign yes yes  

16801 street sign street sign street sign yes yes double LIDAR 
return artifact 

16809 street sign street sign street sign yes yes  

16812 street sign street sign street sign yes yes  

 

I. SEGMENT ANALYSIS OF NEIGHBORHOOD 2 DATASET 

 
filename 

suffix 
>70% label 2D image 

contents 
3D segment 

contents 
2D matches 

3D? 
Accurately 

labeled 
pointcloud? 

comments 

10730 cab front half of 
vehicle 

front half of 
vehicle 

yes yes  

2127 limousine side of 
vehicle with 
person 
entering 

side of 
vehicle with 
person 
entering 

yes yes  

2135 limousine side of 
vehicle with 
person 
entering 

side of 
vehicle with 
person 
entering 

yes yes  

8864 limousine back of 
vehicle, 
person 
opening back 
hatch 

back of 
vehicle, 
person 
opening back 
hatch 

yes yes  

8882 limousine back of 
vehicle with 
hatch open 

back of 
vehicle with 
hatch open 

yes yes  

8889 limousine back of 
vehicle with 
hatch open 

back of 
vehicle with 
hatch open 

yes yes  

8896 limousine back of 
vehicle with 
hatch open 

back of 
vehicle with 
hatch open 

yes yes  

15483 limousine front corner 
of vehicle 

front corner 
of vehicle 

yes yes  

4133 microwave long empty 
crop 

tree trunk no no sync error 

4137 microwave long empty 
crop 

tree trunk no no sync error 

2809 minivan back of back of yes yes  



 77 

vehicle vehicle 
2830 minivan back of 

vehicle 
back of 
vehicle 

yes yes  

3881 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

3889 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

5338 minivan front corner 
of vehicle 

front corner 
of vehicle 

yes yes small 
ground 
artifact 

5348 minivan most of 
vehicle 

most of 
vehicle 

yes yes  

5388 minivan side of 
vehicle 

side of 
vehicle 

yes yes poor 
segment 

5700 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

5715 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

5719 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14441 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14449 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14824 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14828 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14835 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

14837 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

19628 minivan front corner 
of vehicle 

unknown yes no possibly 
fine, but 
very poor 
segment 

20452 minivan back of 
vehicle 

back of 
vehicle 

yes yes  

3184 mobile home foreground 
fence and 
tree, 
background 
home 

fence and 
tree 

yes no background 
object got 
classified 

1190 pickup back of 
vehicle 

back of 
vehicle 

yes yes  

1201 pickup back of 
vehicle 

back of 
vehicle 

yes yes  

1214 pickup back of 
vehicle 

back of 
vehicle 

yes yes  

1217 pickup back of 
vehicle 

back of 
vehicle 

yes yes  



 78 

19614 school bus back of 
vehicle 

back of 
vehicle 

yes yes marginally 
acceptable. 
Very small 
crop and 
small 
segment 

3505 sports car front of 
vehicle 

front of 
vehicle 

yes yes very small 
crop and 
segment 

 

 



 79 

LIST OF REFERENCES 

[1] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,” Int. J. 
Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015. [Online]. Available: 
https://arxiv.org/pdf/1409.0575.pdf 

[2] S. Russell, “DARPA Grand Challenge winner: Stanley the Robot!,” Popular 
Mechanics, Jan. 15, 2006. [Online]. Available: 
http://www.popularmechanics.com/technology/engineering/robots/2169012 

[3] O. Cameron, “An introduction to LIDAR: The key self-driving car sensor,” 
Voyage, May 9, 2017. [Online]. Available: https://news.voyage.auto/an-
introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff 

[4] J. Hu et al. “Squeeze-and-excitation networks,” presented at CVPR 2017, Hawaii 
Convention Center, Honolulu, HI, USA, Jul. 26, 2017. [Online]. Available: 
http://image-net.org/challenges/talks_2017/SENet.pdf  

[5] C. Szegedy et al., “Inception-v4, Inception-ResNet and the impact of residual 
connections on learning,” in AAAI, 2017. [Online]. Available: 
http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14806/14311 

[6] A. Canziani et al., “An analysis of deep neural network models for practical 
applications”, arXiv, Apr. 14, 2017. [Online]. Available: https://arxiv.org/pdf/
1605.07678.pdf 

[7] A. Karpathy. “What I learned from competing against a ConvNet on ImageNet,” 
GitHub, Sep. 2 2014. [Online]. Available: https://karpathy.github.io/2014/09/02/
what-i-learned-from-competing-against-a-convnet-on-imagenet/ 

[8] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural network for 
real-time object recognition,” in 2015 IEEE/RSJ Int. Conf. on Intelligent Robots 
and Syst. (IROS), 2015. [Online]. Available: http://ieeexplore.ieee.org/abstract/
document/7353481/ 

[9] I. Kadar and O. Ben-Shahar, “SceneNet: A perceptual ontology for scene 
understanding,” presented at ECCV Workshops, Ben Gurion Univ. of Negev, 
Beer Sheba, Israel. Sep. 6, 2014. [Online]. Available: 
https://www.cs.bgu.ac.il/~ilankad/pdfs/2014-Kadar_and_Ben_Shahar-
SceneNet_A_Perceptual_Ontology_for_Scene_Understanding.pdf 

[10] “Computer vision tasks,” class notes for CS231n: Convolutional Neural Networks 
for Visual Recognition, Dept. of Comp. Sci., Stanford University, Palo Alto, CA, 
USA, winter 2015. [Online]. Available: http://cs231n.stanford.edu/slides/2016/
winter1516_lecture8.pdf 



 80 

[11] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous 
activity,” The Bulletin of Mathematical Biophysics vol. 5, no.4, pp. 115-133. 1943 

[12] A. Krizhevsky, “Imagenet classification with deep convolutional neural 
networks,” in Neural Information Processing Systems Conference. 2012. 
[Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf 

[13] “Results of ILSVRC2014,” ImageNet. Accessed Nov. 1, 2017. [Online]. 
Available: http://www.image-net.org/challenges/LSVRC/2014/results#det 

[14] “Image recognition,” TensorFlow, Nov. 2, 2017. [Online]. Available: 
https://www.tensorflow.org/tutorials/image_recognition 

[15] R. Rusu, “Semantic 3d object maps for everyday manipulation in human living 
environments,” Ph.D. dissertation, Dept. of Comp. Sci., Technical Univ. of 
München, Munich, Germany, 2010. [Online]. Available: 
http://mediatum.ub.tum.de/doc/800632/document.pdf 

 [16] “Depth clustering,” University of Bonn. Accessed Oct. 30, 2017. [Online]. 
Available: https://github.com/Photogrammetry-Robotics-Bonn/depth_clustering 

[17] T. Hackel et al. “Semantic3D. net: A new large-scale point cloud classification 
benchmark,” in ISPRS Annals of the Photogrammetry, Remote Sensing, and 
Spatial Information Sciences, 2017. [Online]. Available: https://www.isprs-ann-
photogramm-remote-sens-spatial-inf-sci.net/IV-1-W1/91/2017/isprs-annals-IV-1-
W1-91-2017.pdf 

[18] Handprinted Forms and Characters Database. NIST Special Database 19. 
Accessed Nov. 1, 2017. [Online]. Available: https://www.nist.gov/srd/nist-
special-database-19.  

[19] R. Fisher, Iris Data Set, 1936. [Online]. Available: 
http://archive.ics.uci.edu/ml/datasets/Iris 

[20] A. Casalboni et al., “Amazon Mechanical Turk: Help for building your machine 
learning datasets,” Cloud Academy Blog, Oct. 23, 2015. [Online]. Available: 
https://cloudacademy.com/blog/machine-learning-datasets-mechanical-turk/ 

[21] P. Ipeirotis, F. Provost, and J. Wang, “Quality management on Amazon 
Mechanical Turk,” in Proc. of the ACM SIGKDD workshop on human 
computation, 2010. [Online]. Available: https://dl.acm.org/
citation.cfm?id=1837906 

[22] T. Lin et al., “Microsoft COCO: Common Objects in Context,” in Eur. Conf. on 
Comput. Vision, 2014. [Online]. Available: https://arxiv.org/pdf/1405.0312.pdf 



 81 

[23] “About ImageNet,” ImageNet. Accessed Oct. 28, 2017. [Online]. Available: 
http://image-net.org/about-stats 

[24] J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in 2009 
IEEE Conf. on Comput. Vision and Pattern Recognition, 2009. [Online]. 
Available: http://www.image-net.org/papers/imagenet_cvpr09.pdf  

[25] “VOC2011 annotation guidelines,” Pascal VOC Challenge. Accessed Oct. 28, 
2017. [Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
guidelines.html 

[26] K. Lai et al., RGB-D (Kinect) Object Dataset, 2012. [Online]. Available: 
http://rgbd-dataset.cs.washington.edu/ 

[27] A. Singh et al., “Bigbird: A large-scale 3d database of object instances,” in 2014 
IEEE Int. Conf. on Robotics and Automation (ICRA), 2014. [Online]. Available: 
http://people.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-BigBIRD.pdf  

[28] S. Choi et al., A Large Dataset of Object Scans, 2016. [Online]. Available: 
https://arxiv.org/abs/1602.02481.pdf  

[29] M. De Deuge et al., “Unsupervised feature learning for classification of outdoor 
3d scans,” in Australasian Conf. on Robotics and Automation, 2013. [Online]. 
Available: http://www.araa.asn.au/acra/acra2013/papers/pap133s1-file1.pdf 

[30] A. Boyko, “Efficient interfaces for accurate annotation of 3D point clouds,” Ph.D 
dissertation, Dept. of Comp. Sci., Princeton Univ., Princeton, NJ, USA, 2015. 
[Online]. Available: http://gfx.cs.princeton.edu/pubs/_2015_EIF/index.php 

[31] S. Charrington, “Training data for autonomous vehicles with Daryn Nakhuda of 
MightyAI,” This Week in Machine Learning & AI, podcast, Oct. 23, 2017. 
[Online]. Available: https://twimlai.com/twiml-talk-057-training-data-
autonomous-vehicles-daryn-nakhuda/ 

[32] B. Russell et al., “LabelMe: A database and web-based tool for image 
annotation,” Int. Journal of Comput. Vision, vol. 77, no. 1, pp. 157–173, May 
2008. [Online]. Available: http://www.faculty.idc.ac.il/arik/seminar2010/papers/
Databases/LabelMe.pdf 

[33] A. Handa et al., “Understanding real world indoor scenes with synthetic data,” in 
Proc. of the IEEE Conf. on Comput. Vision and Pattern Recognition, 2016. 
[Online]. Available: https://www.cv-foundation.org/openaccess/
content_cvpr_2016/papers/Handa_Understanding_Real_World_CVPR_
2016_paper.pdf 



 82 

[34] D. Prokhorov, “A convolutional learning system for object classification in 3-D 
LIDAR data,” IEEE Trans. on Neural Networks, vol. 21, no. 5, pp.858-863, May 
2010. [Online]. doi:10.1109/TNN.2010.2044802 

[35] D. Maturana and S. Scherer, “3d convolutional neural networks for landing zone 
detection from lidar,” in 2015 IEEE Int. Conf. on Robotics and Automation 
(ICRA), IEEE, 2015. [Online]. Available: http://dimatura.net/publications/
3dcnn_lz_maturana_scherer_icra15.pdf 

[36] “ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017 
overview,” ImageNet. Accessed Nov. 1, 2017. [Online]. Available: http://image-
net.org/challenges/talks_2017/ILSVRC2017_overview.pdf 

[37] M. Caudill, “Neural networks primer, part I,” AI Expert, vol. 2, no. 12, pp. 46–52, 
Dec. 1987. 

[38] M. Kukacka, “Overview of deep neural networks,” in WDS ‘12 Proc. of 
Contributed Papers, 2012. [Online]. Available: https://www.mff.cuni.cz/veda/
konference/wds/proc/pdf12/WDS12_117_i1_Kukacka.pdf 

[39] C. Szegedy et al., “Going deeper with convolutions,” in Proc. of the IEEE Conf. 
on Comput. Vision and Pattern Recognition, 2015. [Online]. Available: 
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/
Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf 

[40] “A 2-layer neural network,” class notes for CS231n: Convolutional Neural 
Networks for Visual Recognition, Dept. of Comp. Sci., Stanford University, Palo 
Alto, CA, USA, spring 2017. [Online]. Available: http://cs231n.github.io/neural-
networks-1/ 

[41] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous 
distributed systems,” in Proc. of the 12th USENIX Symp. on Operating Syst. Des., 
2016. [Online]. Available: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf 

[42] M. Li, “Ranking Popular Deep Learning Libraries for Data Science,” The Data 
Incubator, Oct. 12, 2017. [Online]. Available: https://blog.thedataincubator.com/
2017/10/ranking-popular-deep-learning-libraries-for-data-science/ 

[43] L. Linsen. “Point cloud representation,” University of Karlsruhe, Baden-
Württemberg, Germany, 2001. [Online].  Available: 
http://geom.ivd.kit.edu/downloads/pubs/pub-linsen_2001.pdf 

[44] R. Amadeo, “Google’s Waymo invests in LIDAR technology, cuts costs by 90 
percent,” Ars Technica, Jan. 10, 2017. [Online]. Available: 
https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-
cuts-costs-by-90-percent 



 83 

[45] “HDL-64E,” Velodyne. Accessed Nov. 1, 2017. [Online]. Available: 
http://www.velodynelidar.com/hdl-64e.html 

[46] R. Morrison, “Fiducial marker detection and pose estimation from LIDAR range 
data,” M.S. thesis, Dept. of Comp. Sci., NPS, Monterey, CA, USA, 2010. 
[Online]. Available: https://calhoun.nps.edu/handle/10945/5411 

[47] J. Geng, “Structured-light 3D surface imaging: a tutorial,” Advances in Optics 
Photonics, vol. 3, pp. 128–160, Mar. 2011. [Online]. doi:10.1364/AOP.3.000128 

[48] “ZED - depth sensing and camera tracking,” StereoLabs. Accessed Oct. 30, 2017. 
[Online]. Available: https://www.stereolabs.com/zed/specs/ 

[49] “HDL-32E,” Velodyne. Accessed Oct. 30, 2017. [Online]. Available: 
http://velodynelidar.com/hdl-32e.html 

[50] “Logitech c920 and c910 fields of view for RGBDtoolkit,” TheRandomLab, Mar. 
5, 2013. [Online]. Available: http://therandomlab.blogspot.com/2013/03/logitech-
c920-and-c910-fields-of-view.html 

[51] “Integration with other libraries,” ROS. Accessed Dec. 4, 2017. [Online]. 
Available: http://www.ros.org/integration/ 

[52] “Documentation - Point Cloud Library (PCL),” Pointclouds.org. Accessed Oct. 
30, 2017. [Online]. Available: http://pointclouds.org/documentation/tutorials/
don_segmentation.php 

[53] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmentation of sparse 
3d laser scans for online operation,” in IEEE/RSJ Int. Conf. on Intelligent Robots 
and Systems (IROS), 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7759050/ 

[54] E. Gouillart and G.Varoquaux, “Image manipulation and processing using Numpy 
and Scipy,” Scipy-Lectures, Oct. 2017. [Online]. Available: http://www.scipy-
lectures.org/advanced/image_processing/ 

[55] “Drawing functions,” OpenCV. Accessed Dec. 4, 2017. [Online]. Available: 
https://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html 

 

 

 



 84 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

  



 85 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Proposed Approach
	B. Contributions

	II. MODEL OVERVIEW
	A. Phase 1: Automated Dataset Creation and Training
	1. Synchronized Collection of Pointcloud and RGB Data
	2. Pointcloud Segmentation
	3. 3D-2D Correlation
	4. 2D Classification
	5. Confidence-Level Thresholding
	6. Segment Transformation
	7. Neural Network Training

	B. Phase 2: Context Discovery
	1. Acquisition of Geotagged Media
	2. Object Detection
	3. Populate Scene Context Database

	C. Phase 3: Real-Time Pointcloud Classification
	1. Classifier Preparation
	2. Pointcloud Collection
	3. Pointcloud Segmentation
	4. Data Transformation
	5. Classification by Neural Network
	6. Results Boosting
	7. Confidence Thresholding

	D. MODEL CONCLUSIONS

	III. RELATED WORK
	A. Neural Networks
	B. Dataset Creation
	1. Hand Annotated Datasets
	2. Tool-Based Annotation of Datasets
	3. Synthetic Dataset Creation


	IV. BACKGROUND
	A. Neural Networks
	1. Overview of Neural Networks
	2. TensorFlow and Inception

	B. Pointclouds
	1. Pointcloud Overview


	V. METHODOLOGY
	A. Phase 1 Implementation
	1. Synchronized Collection of Pointcloud and RGB Data
	a. Tandem LIDAR+CAMERA Mount and Mobile Collection Unit
	b. Collection Details
	c. LIDAR Hardware
	d. Camera Hardware
	e. Robot Operating System nodes

	2. Pointcloud Segmentation
	3. 3D-2D Correlation
	4. 2D Classification
	5. Confidence-Level Thresholding
	6. Phase 1 Steps Not Implemented

	B. Phase 1 Experiment Setup
	C. Phase 1 Criteria for Evaluation
	D. Phase 2 Exploration
	1. Acquisition of Geotagged Media
	2. Object Detection
	3. Populate Scene Context Database


	VI. ERROR ANALYSIS
	A. Phase 1 Error Sources
	1. Synchronized Collection Error
	2. Pointcloud Segmentation Error
	3. 3D-2D Correlation Error
	4. 2D Classification Error
	5. Confidence-Level Thresholding Error


	VII. RESULTS
	A. Phase 1 Functionality
	B. Phase 1 Performance
	1. Sources of Pipeline Error
	2. Comparison to Human Performance


	VIII. CONCLUSIONS
	A. Automated Dataset Creation Conclusions
	B. Future Work
	1. Dataset Database


	APPENDIX
	A. Tandem LIDAR and Camera Mount TOP PLATE CAD DRAWINGS
	B. Tandem LIDAR and Camera Mount Mobile Collection Box CAD Drawings
	C. Tandem LIDAR and Camera Mount TOP PLATE Stereolithography files
	D. Tandem LIDAR and Camera Mount Mobile Collection Stereolithography files
	E. Neighborhood 1 dataset
	F. Neighborhood 2 dataset
	G. Additional datasets
	H. Segment analysis of Neighborhood 1 Dataset
	I. Segment analysis of Neighborhood 2 Dataset

	List of References
	initial distribution list

